Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T20:57:23.063Z Has data issue: false hasContentIssue false

Path and Directionality Discovery in Individual Dynamic Models: A Regularized Unified Structural Equation Modeling Approach for Hybrid Vector Autoregression

Published online by Cambridge University Press:  01 January 2025

Ai Ye*
Affiliation:
University of North Carolina at Chapel Hill
Kathleen M. Gates
Affiliation:
University of North Carolina at Chapel Hill
Teague Rhine Henry
Affiliation:
University of North Carolina at Chapel Hill
Lan Luo
Affiliation:
University of North Carolina at Chapel Hill
*
Correspondence should be made to Ai Ye, L. L. Thurstone Psychometric Lab, Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Campus Box 3270 , Chapel Hill, NC 27599, USA. Email: awella@live.unc.edu

Abstract

There recently has been growing interest in the study of psychological and neurological processes at an individual level. One goal in such endeavors is to construct person-specific dynamic assessments using time series techniques such as Vector Autoregressive (VAR) models. However, two problems exist with current VAR specifications: (1) VAR models are restricted in that contemporaneous relations are typically modeled either as undirected relations among residuals or directed relations among observed variables, but not both; (2) current estimation frameworks are limited by the reliance on stepwise model building procedures. This study adopts a new modeling approach. We first extended the current unified SEM (uSEM) framework, a widely used structural VAR model, to a hybrid representation (i.e., “huSEM”) to include both undirected and directed contemporaneous effects, and then replaced the stepwise modeling with a LASSO-type regularization for a global search of the optimal sparse model. Our simulation study showed that regularized huSEM performed uniformly the best over alternative VAR representations and/or modeling approaches, with respect to accurately recovering the presence and directionality of hybrid relations and reliably removing false relations when the data are generated to have two types of contemporaneous relations. The present study to our knowledge is the first application of the recently developed regularized SEM technique to the estimation of huSEM, which points to a promising future for statistical learning in psychometric models.

Type
Original Research
Copyright
Copyright © 2021 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abegaz, F., Wit, E. (2013). Sparse time series chain graphical models for reconstructing genetic networks. Biostatistics, 14 (3), 586599CrossRefGoogle ScholarPubMed
Anderson, J., Gerbing, D. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49 (2) 155173CrossRefGoogle Scholar
Barrett, A. B., Murphy, M., Bruno, M. -A., Noirhomme, Q., Boly, M., Laureys, S., Seth, A. K. (2012). Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PLoS ONE, 7 (1) e29072CrossRefGoogle ScholarPubMed
Beltz, A. M., Molenaar, P. C. (2016). Dealing with multiple solutions in structural vector autoregressive models. Multivariate Behavioral Research, 51 (2–3), 357373CrossRefGoogle ScholarPubMed
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107 (2) 238CrossRefGoogle ScholarPubMed
Bentler, P. M., Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88 (3) 588CrossRefGoogle Scholar
Bollen, K. A. (1989). A new incremental fit index for general structural equation models. Sociological Methods & Research, 17 (3) 303316CrossRefGoogle Scholar
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., Borsboom, D., Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8 (4) e60188CrossRefGoogle ScholarPubMed
Bringmann, L., Lemmens, L., Huibers, M., Borsboom, D., Tuerlinckx, F. (2015). Revealing the dynamic network structure of the beck depression inventory-ii. Psychological Medicine, 45 (4) 747757CrossRefGoogle ScholarPubMed
Chen, G., Glen, D. R., Saad, Z. S., Hamilton, J. P., Thomason, M. E., Gotlib, I. H., Cox, R. W. (2011). Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis. Computers in Biology and Medicine, 41 (12) 11421155CrossRefGoogle ScholarPubMed
Chou, C. -P., Bentler, P. M. (1990). Model modification in covariance structure modeling: A comparison among likelihood ratio, Lagrange multiplier, and Wald tests. Multivariate Behavioral Research, 25 (1) 115136CrossRefGoogle ScholarPubMed
Chou, C.-P., & Huh, J. (2012). Model modification in structural equation modeling.Google Scholar
Chow, S. -M., Ho, M-HR, Hamaker, E. L., Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17 (2) 303332CrossRefGoogle Scholar
Craddock, C., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab, A., Khundrakpam, B. S., Lewis, J. D., Li, Q., Milham, M., Yan, C., Bellec, P. (2013). The neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics,Google Scholar
Di Martino, A., Yan, C. -G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M. et al.. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19 (6) 659667CrossRefGoogle ScholarPubMed
Eichler, M. (2005). A graphical approach for evaluating effective connectivity in neural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1457) 953967CrossRefGoogle ScholarPubMed
Enders, C. K., Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8 (3) 430457CrossRefGoogle Scholar
Epskamp, S. (2018). Graphicalvar: Graphical var for experience sampling data [R package version 0.2.2]. https://CRAN.R-project.org/Google Scholar
Epskamp, S. (2020). Psychonetrics: Structural equation modeling and confirmatory network analysis. http://psychonetrics.org/Google Scholar
Epskamp, S., & Fried, E. I. (2016). A primer on estimating regularized psychological networks. arXiv preprint arXiv:1607.01367.Google Scholar
Epskamp, S., Waldorp, L. J., Mõttus, R., Borsboom, D. (2018). The gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53 (4) 453480CrossRefGoogle ScholarPubMed
Fisher, A. J. (2015). Toward a dynamic model of psychological assessment: Implications for personalized care. Journal of Consulting and Clinical Psychology, 83 (4) 825CrossRefGoogle Scholar
Fisher, A. J., Boswell, J. F. (2016). Enhancing the personalization of psychotherapy with dynamic assessment and modeling. Assessment, 23 (4) 496506CrossRefGoogle ScholarPubMed
Friedman, J., Hastie, T., & Tibshirani, R. (2019). Glasso: Graphical lasso: Estimation of gaussian graphical models [R package version 1.11]. https://CRAN.R-project.org/package=glassoGoogle Scholar
Friedman, J., Hastie, T., Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9 (3) 432441CrossRefGoogle ScholarPubMed
Friston, K., Moran, R., Seth, A. K. (2013). Analysing connectivity with granger causality and dynamic causal modelling. Current Opinion in Neurobiology, 23 (2) 172178CrossRefGoogle ScholarPubMed
Gates, K. M., Henry, T., Steinley, D., Fair, D. A. (2016). A Monte Carlo evaluation of weighted community detection algorithms. Frontiers in Neuroinformatics, 10, 45CrossRefGoogle Scholar
Gates, K. M., Lane, S. T., Varangis, E., Giovanello, K., Guiskewicz, K. (2017). Unsupervised classification during time-series model building. Multivariate Behavioral Research, 52 (2) 129148CrossRefGoogle ScholarPubMed
Gates, K. M., Molenaar, P. C. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63 (1) 310319CrossRefGoogle ScholarPubMed
Gates, K. M., Molenaar, P. C., Hillary, F. G., Ram, N., Rovine, M. J. (2010). Automatic search for fmri connectivity mapping: An alternative to granger causality testing using formal equivalences among sem path modeling, var, and unified sem. NeuroImage, 50 (3) 11181125CrossRefGoogle ScholarPubMed
Gates, K. M., Molenaar, P. C., Hillary, F. G., Slobounov, S. (2011). Extended unified sem approach for modeling event-related fmri data. NeuroImage, 54 (2) 11511158CrossRefGoogle ScholarPubMed
Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association, 77 (378) 304313CrossRefGoogle Scholar
Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424438CrossRefGoogle Scholar
Hamaker, E. L., Dolan, C. V., Molenaar, PCM (2002). On the nature of sem estimates of arma parameters. Structural Equation Modeling: A Multidisciplinary Journal, 9 (3) 347368CrossRefGoogle Scholar
Hamilton, J. D. (1994). Time series analysis, Princeton, NJ: Princeton University PressCrossRefGoogle Scholar
Hastie, T., Tibshirani, R., Wainwright, M. (2015). Statistical learning with sparsity: The lasso and generalizations, Chapman: Hall/CRCCrossRefGoogle Scholar
Hillary, F. G., Roman, C. A., Venkatesan, U., Rajtmajer, S. M., Bajo, R., Castellanos, N. D. (2015). Hyperconnectivity is a fundamental response to neurological disruption. Neuropsychology, 29 (1) 59CrossRefGoogle ScholarPubMed
Hoerl, A. E., Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12 (1) 5567CrossRefGoogle Scholar
Huang, J., Ma, S., & Zhang, C.-H. (2008). Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica, 18(4), 1603–1618. http://www.jstor.org/stable/24308572Google Scholar
Huang, P. -H. (2019). Lslx: Semi-confirmatory structural equation modeling via penalized likelihood. Journal of Statistical Software.Google Scholar
Huang, P. -H., Chen, H., Weng, L. -J. (2017). A penalized likelihood method for structural equation modeling. psychometrika, 82 (2) 329354CrossRefGoogle ScholarPubMed
Jacobucci, R. (2017). Regsem: Regularized structural equation modeling.CrossRefGoogle Scholar
Jacobucci, R., Grimm, K. J., Brandmaier, A. M., Serang, S., Kievit, R. A., & Scharf, F. (2019). Regsem: Regularized structural equation modeling [R package version 1.3.9]. https://CRAN.R-project.orgGoogle Scholar
Jacobucci, R., Grimm, K. J., McArdle, J. J. (2016). Regularized structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 23 (4) 555566CrossRefGoogle ScholarPubMed
Jöreskog, K. G., & Sörbom, D. (1981). Lisrel 5: Analysis of linear structural relationships by maximum likelihood and least squares methods;[user’s guide]. University of Uppsala.Google Scholar
Jöreskog, K. G., & Sörbom, D. (1986). Lisrel vi: Analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods. Scientific Software.Google Scholar
Kaplan, D. (1988). The impact of specification error on the estimation, testing, and improvement of structural equation models. Multivariate Behavioral Research, 23 (1) 6986CrossRefGoogle ScholarPubMed
Kim, J., Zhu, W., Chang, L., Bentler, P. M., Ernst, T. (2007). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional mri data. Human Brain Mapping, 28 (2) 8593CrossRefGoogle ScholarPubMed
Lane, S. (2017). Regularized structural equation modeling for individual-level directed functional connectivity.Google Scholar
Lane, S., Gates, K., Fisher, Z., Arizmendi, C., Molenaar, P., Hallquist, M., Pike, H., Henry, T., Duffy, K., Luo, L., & Beltz, A. (2019). Gimme: Group iterative multiple model estimation [R package version 0.6-1]. https://github.com/GatesLab/gimme/Google Scholar
Lane, S. T., Gates, K. M., Pike, H. K., Beltz, A. M., Wright, A. G. (2019). Uncovering general, shared, and unique temporal patterns in ambulatory assessment data. Psychological Methods, 24 (1) 54CrossRefGoogle ScholarPubMed
Lauritzen, S. L. (1996). Graphical models, Oxford:Clarendon PressCrossRefGoogle Scholar
Luo, L., Gates, Z. F., Fisher, , Arizmendi, C., Molenaar, P. C. M., & Beltz, K. M., Adriene Gates. (Under Review). Estimating both directed and bidirectional contemporaneous relations in time series data using hybrid-gimme. Psychological Methods.Google Scholar
Lütkepohl, H. (2005). New introduction to multiple time series analysis, Berlin: SpringerCrossRefGoogle Scholar
MacCallum, R. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100 (1) 107CrossRefGoogle Scholar
MacCallum, R. C., Roznowski, M., Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111 (3) 490CrossRefGoogle ScholarPubMed
Meehl, P. E. (1990). Why summaries of research on psychological theories are often uninterpretable. Psychological Reports, 66 (1) 195244CrossRefGoogle Scholar
Molenaar, P. C. (2017). Equivalent dynamic models. Multivariate Behavioral Research, 52 (2) 242258CrossRefGoogle ScholarPubMed
Molenaar, P. C. (2019). Granger causality testing with intensive longitudinal data. Prevention Science, 20 (3) 442451CrossRefGoogle ScholarPubMed
Molenaar, P. C., & Lo, L. L. (2016). Alternative forms of granger causality, heterogeneity and non-stationarity. In W. Wiedermann, & A. von Eye (Eds.), Statistics and causality: Methods for applied empirical research (pp. 205–230).Google Scholar
Murphy, M., Bruno, M. -A., Riedner, B. A., Boveroux, P., Noirhomme, Q., Landsness, E. C., Brichant, J. -F., Phillips, C., Massimini, M., Laureys, S. et al.. (2011). Propofol anesthesia and sleep: A high-density eeg study. Sleep, 34 (3) 283291CrossRefGoogle ScholarPubMed
Myin-Germeys, I., Oorschot, M., Collip, D., Lataster, J., Delespaul, P., Van Os, J. (2009). Experience sampling research in psychopathology: Opening the black box of daily life. Psychological Medicine, 39 (9) 15331547CrossRefGoogle ScholarPubMed
Nichols, T. T., Gates, K. M., Molenaar, P. C., Wilson, S. J. (2014). Greater bold activity but more efficient connectivity is associated with better cognitive performance within a sample of nicotine-deprived smokers. Addiction Biology, 19 (5) 931940CrossRefGoogle ScholarPubMed
Price, R. B., Lane, S., Gates, K., Kraynak, T. E., Horner, M. S., Thase, M. E., Siegle, G. J. (2017). Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood. Biological Psychiatry, 81 (4) 347357CrossRefGoogle ScholarPubMed
Pruttiakaravanich, A., & Songsiri, J. (2018). Convex formulation for regularized estimation of structural equation models.Google Scholar
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/Google Scholar
Ram, N., Gerstorf, D. (2009). Time-structured and net intraindividual variability: Tools for examining the development of dynamic characteristics and processes. Psychology and Aging, 24 (4) 778CrossRefGoogle ScholarPubMed
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. http://www.jstatsoft.org/v48/i02/CrossRefGoogle Scholar
Rothman, A. J., Levina, E., Zhu, J. (2010). Sparse multivariate regression with covariance estimation. Journal of Computational and Graphical Statistics, 19 (4) 947962CrossRefGoogle ScholarPubMed
Shapiro, M. D., & Watson, M. W. (1988). Sources of business cycle uctuations (Working Paper No. 2589). National Bureau of Economic Research. https://doi.org/10.3386/w2589CrossRefGoogle Scholar
Shumway, R. H., Stoffer, D. S. (2017). Time series analysis and its applications: With r examples, Berlin: SpringerCrossRefGoogle Scholar
Sims, C. A. (1981). An autoregressive index model for the U.S., 1948–1975.Google Scholar
Smith, S. M. (2012). The future of fmri connectivity. Neuroimage, 62 (2) 12571266CrossRefGoogle ScholarPubMed
Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., Woolrich, M. W. (2011). Network modelling methods for fmri. Neuroimage, 54 (2) 875891CrossRefGoogle ScholarPubMed
Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25 (2) 173180CrossRefGoogle ScholarPubMed
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58 (1) 267288CrossRefGoogle Scholar
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M. (2002). Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. NeuroImage, 15 (1) 273289CrossRefGoogle ScholarPubMed
Varoquaux, G., Craddock, R. C. (2013). Learning and comparing functional connectomes across subjects. NeuroImage, 80, 405415CrossRefGoogle ScholarPubMed
Weigard, A., Lane, S., Gates, K., & Beltz, A. (Under Review). The influence of autoregressive relation strength and search strategy on directionality recovery in gimme.Google Scholar
Wigman, J., Van Os, J., Borsboom, D., Wardenaar, K., Epskamp, S., Klippel, A., Viechtbauer, W., Myin-Germeys, I., Wichers, M. et al.. (2015). Exploring the underlying structure of mental disorders: Cross-diagnostic differences and similarities from a network perspective using both a top-down and a bottom-up approach. Psychological Medicine, 45 (11) 23752387CrossRefGoogle ScholarPubMed
Wild, B., Eichler, M., Friederich, H. -C., Hartmann, M., Zipfel, S., Herzog, W. (2010). A graphical vector autoregressive modelling approach to the analysis of electronic diary data. BMC Medical Research Methodology, 10 (1) 28CrossRefGoogle Scholar
Wright, A. G., Beltz, A. M., Gates, K. M., Molenaar, P., Simms, L. J. (2015). Examining the dynamic structure of daily internalizing and externalizing behavior at multiple levels of analysis. Frontiers in Psychology, 6, 1914CrossRefGoogle ScholarPubMed
Yang, J., Gates, K. M., Molenaar, P., Li, P. (2015). Neural changes underlying successful second language word learning: An fmri study. Journal of Neurolinguistics, 33, 2949CrossRefGoogle Scholar
Zou, H., Hastie, T., & Tibshirani, R. (2004). Sparse principal component analysis, Technical Report, Statistics Department, Stanford University.Google Scholar
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101 (476) 14181429CrossRefGoogle Scholar
Supplementary material: File

Ye et al. supplementary material

Ye et al. supplementary material 1
Download Ye et al. supplementary material(File)
File 3.4 KB
Supplementary material: File

Ye et al. supplementary material

Ye et al. supplementary material 2
Download Ye et al. supplementary material(File)
File 439 Bytes
Supplementary material: File

Ye et al. supplementary material

Reg huSEM Appendix: huSEM to VAR
Download Ye et al. supplementary material(File)
File 357.7 KB
Supplementary material: File

Ye et al. supplementary material

Ye et al. supplementary material 3
Download Ye et al. supplementary material(File)
File 4.2 KB
Supplementary material: File

Ye et al. supplementary material

Ye et al. supplementary material 4
Download Ye et al. supplementary material(File)
File 3.2 KB