Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:51:34.712Z Has data issue: false hasContentIssue false

Ordering Individuals with Sum Scores: The Introduction of the Nonparametric Rasch Model

Published online by Cambridge University Press:  01 January 2025

Robert J. Zwitser*
Affiliation:
University of Amsterdam
Gunter Maris
Affiliation:
Cito Institute for Educational Measurement and University of Amsterdam
*
Correspondence should be made to Robert J. Zwitser, University of Amsterdam, Amsterdam, The Netherlands. Email: zwitser@uva.nl

Abstract

When a simple sum or number-correct score is used to evaluate the ability of individual testees, then, from an accountability perspective, the inferences based on the sum score should be the same as the inferences based on the complete response pattern. This requirement is fulfilled if the sum score is a sufficient statistic for the parameter of a unidimensional model. However, the models for which this holds true are known to be restrictive. It is shown that the less restrictive nonparametric models could result in an ordering of persons that is different from an ordering based on the sum score. To arrive at a fair evaluation of ability with a simple number-correct score, ordinal sufficiency is defined as a minimum condition for scoring. The monotone homogeneity model, together with the property of ordinal sufficiency of the sum score, is introduced as the nonparametric Rasch model. A basic outline for testable hypotheses about ordinal sufficiency, as well as illustrations with real data, is provided.

Type
Original paper
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, F.M., & Novick, M.R. (Eds.), Statistical theories of mental test scores (pp. 395479). Reading: Addison-Wesley.Google Scholar
Conover, W.J. (1971). Practical nonparametric statistics. New York: Wiley.Google Scholar
Doob, J. (1949). Heuristic approach to the Kolmogorov–Smirnov theorems. The Annals of Mathematical Statistics, 20, 393403.CrossRefGoogle Scholar
Fischer, G.H. (1974). Einfuhrung in die Theorie psychologischer tests. (Introduction to the theory of psychological tests). Bern: Verlag Hans Huber.Google Scholar
Grayson, D.A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio. Psychometrika, 53, 383392.CrossRefGoogle Scholar
Guttman, L. (1950). The basis for scalogram analysis. In Stouffer, S., Guttman, L., Suchman, E., Lazarsfeld, P., Star, S., & Clausen, J. (Eds.), Measurement and prediction (pp. 6090). Princeton, NY: Princeton University Press.Google Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62(3), 331347.CrossRefGoogle Scholar
Hessen, D.J. (2005). Constant latent odds-ratios models and the Mantel–Haenszel null hypothesis. Psychometrika, 70(3), 497516.CrossRefGoogle Scholar
Huynh, H. (1994). A new proof for monotone likelihood ratio for the sum of independent Bernoulli random variables. Psychometrika, 59, 7779.CrossRefGoogle Scholar
Lord, F.M., & Novick, M.R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.Google Scholar
Maris, G. (2008). A note on “constant latent odds-ratios models and the Mantel–Haenszel null hypothesis” Hessen, 2005. Psychometrika, 73(1), 153157.CrossRefGoogle ScholarPubMed
Meijer, R.R., Sijtsma, K., & Smid, N.G. (1990). Theoretical and empirical comparison of the Mokken and the Rasch approach to IRT. Applied Psychological Measurement, 14(3), 283298.CrossRefGoogle Scholar
Milgrom, P.R. (1981). Good news and bad news: Representation theorems and application. The Bell Journal of Economics, 12(2), 380391.CrossRefGoogle Scholar
Mokken, R. (1971). A theory and procedure of scale analysis. The Hague: Mouton.CrossRefGoogle Scholar
Post, W.J. (1992). Nonparametric unfolding models. A latent structure approach. Leiden: DSWO Press.Google Scholar
R Development Core Team (2013). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from http://www.R-project.org.Google Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: The Danish Institute of Educational Research. (Expanded edition, 1980. Chicago: The University of Chicago Press).Google Scholar
Ross, S.M. (1996). Stochastic processes. (2nd ed.). New York: Wiley.Google Scholar
Sekhon, J.S. (2011). Multivariate and propensity score matching software with automated balance optimization: The matching package for R. Journal of Statistical Software, 42(7), 152.CrossRefGoogle Scholar
Sijtsma, K., & Hemker, B.T. (2000). A taxonomy of IRT models for ordering persons and items using simple sum scores. Journal of Educational and Behavioral Statistics, 25(4), 391415.CrossRefGoogle Scholar
Sijtsma, K., & Molenaar, I. (2002). Introduction to nonparametric item response theory. Thousand Oaks, California: Sage Publications Inc.CrossRefGoogle Scholar
Verhelst, N.D., & Glas, C.A.W. (1995). The one parameter logistic model: OPLM. In Fischer, G.H., & Molenaar, I.W. (Eds.), Rasch models: Foundations, recent developments and applications (pp. 215238). New York: Springer.CrossRefGoogle Scholar
Verhelst, N.D., Glas, C.A.W., & Verstralen, HHFM (1993). OPLM: One parameter logistic model. Computer program and manual. Arnhem: Cito.Google Scholar