Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:00:33.707Z Has data issue: false hasContentIssue false

On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling

Published online by Cambridge University Press:  01 January 2025

J. Fernando Vera*
Affiliation:
University of Granada
Rodrigo Macías
Affiliation:
Centro De Investigación En Matemáticas
*
Correspondence should be made to J. Fernando Vera, Unidad Monterey, University of Granada, Granada, Spain. Email: jfvera@ugr.es

Abstract

In this article, we analyse the usefulness of multidimensional scaling in relation to performing K-means clustering on a dissimilarity matrix, when the dimensionality of the objects is unknown. In this situation, traditional algorithms cannot be used, and so K-means clustering procedures are being performed directly on the basis of the observed dissimilarity matrix. Furthermore, the application of criteria originally formulated for two-mode data sets to determine the number of clusters depends on their possible reformulation in a one-mode situation. The linear invariance property in K-means clustering for squared dissimilarities, together with the use of multidimensional scaling, is investigated to determine the cluster membership of the observations and to address the problem of selecting the number of clusters in K-means for a dissimilarity matrix. In particular, we analyse the performance of K-means clustering on the full dimensional scaling configuration and on the equivalently partitioned configuration related to a suitable translation of the squared dissimilarities. A Monte Carlo experiment is conducted in which the methodology examined is compared with the results obtained by procedures directly applicable to a dissimilarity matrix.

Type
Theory and Methods
Copyright
Copyright © 2021 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, R. A., Gower, J. C. (1990). Approximating a symmetric matrix. Psychometrika, 55, 665675CrossRefGoogle Scholar
Borg, I. & Groenen, P. J. F. (2005). Modern multidimensional scaling. Theory and applications, Springer series in statistics, 2nd Ed. Springer.Google Scholar
Brusco, M. J., Steinley, D. (2007). A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika, 72, 583600CrossRefGoogle Scholar
Cailliez, F. (1983). The analytical solution of the additive constant problem. Psychometrika, 48 (2), 305308CrossRefGoogle Scholar
Calinski, R. B., Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3, 127Google Scholar
Chae, S. S., Dubien, J. L., Warde, W. D. (2006). A method of predicting the number of clusters using rand’s statistic. Computational Statistics and Data Analysis, 50 (12), 35313546CrossRefGoogle Scholar
Chiang, M. M., Mirkin, B. (2010). Intelligent choice of the number of cluster in K-means clustering: an experimental study with different cluster spreads. Journal of Classification, 27, 340CrossRefGoogle Scholar
Cilibrasi, R. & Vitanyi, P. (2004). Automatic meaning discovery using Google. Technical Report (pp. 1–31). University of Amsterdam, National ICT of Australia.Google Scholar
De Leeuw, J., Groenen, PJF (1997). Inverse multidimensional scaling. Journal of Classification, 14, 321CrossRefGoogle Scholar
De Leeuw, J. & Heiser, W. J. (1980). Multidimensional scaling with restrictions on the configuration. In P.R. Krishnaiah (Ed.), Multivariate analysis (Vol. V, pp. 501–522). North-Holland.Google Scholar
DeSarbo, W., Carroll, J. D., Clark, L., Green, P. (1984). Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables. Psychometrika, 49, 5778CrossRefGoogle Scholar
Duin, R. P. (2012). PRTools. http://www.prtools.org.Google Scholar
Everitt, B. S., Landau, S., Leese, M. & Stahl, D. (2011). Cluster analysis. Wiley series in probability and statistics (5th ed.). Wiley.CrossRefGoogle Scholar
Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J. (2008). Graph distances in the streaming model. SIAM Journal on Computing, 38 (5), 17091727CrossRefGoogle Scholar
Hartigan, J. A. (1975). Clustering algorithms. WileyGoogle Scholar
Hartigan, J. A., Wong, M. A. Algorithm AS 136: A K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-means clustering algorithm. Applied Statistics, (1979). 28, 100108CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.Google Scholar
Heiser, W. J., Groenen, PJF (1997). Cluster differences scaling with a within-clusters loss component and a fuzzy succesive approximation strategy to avoid local minima. Psychometrika, 62 (1), 6383CrossRefGoogle Scholar
Hubert, L., Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193218CrossRefGoogle Scholar
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31 (8), 651666CrossRefGoogle Scholar
Kak, S. (2002). A class of instantaneously trained neural networks. Information Sciences, 148, 97102CrossRefGoogle Scholar
Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. Wiley.CrossRefGoogle Scholar
Krzanowski, W. J., Lai, Y. T. (1985). A criterion for determining the number of groups in a data set using sum of squares clustering. Biometrics, 44, 2334CrossRefGoogle Scholar
Lichtenauer, J. F., Hendriks, E. A., Reinders, MJT (2008). Sign language recognition by combining statistical DTW and independent classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 (11), 2040204618787250CrossRefGoogle ScholarPubMed
Lingoes, J. C. (1971). Some boundary conditions for a monotone analysis of symmetric matrices. Psychometrika, 36, 195203CrossRefGoogle Scholar
Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28 (1982), 129137CrossRefGoogle Scholar
Mardia, K. V. (1978). Some properties of clasical multi-dimesional scaling. Communications in Statistics-Theory and Methods, 7 (13), 12331241CrossRefGoogle Scholar
Makarenkov, V., Legendre, P. (2001). Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software. Journal of Classification, 18, 245271CrossRefGoogle Scholar
McQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In 5th Berkeley symposium on mathematical statistics and probability (Vol. II, pp. 281–297).Google Scholar
Melnykov, V., Chen, W-C, Maitra, R. (2012). MixSim: An R package for simulating data to study performance of clustering algorithms. Journal of Statistical Software, 51 (12), 125CrossRefGoogle Scholar
Milligan, G. W., Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159179CrossRefGoogle Scholar
Pekalska, E., Paclik, P., Duin, R. P. (2001). A generalized kernel approach to dissimilarity-based classification. Journal of Machine Learning Research, 2 (Dec), 175211Google Scholar
Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling data. Journal of the Royal Statistical Society, A, 145, 285312CrossRefGoogle Scholar
Schleif, F. M. (2015). Generic probabilistic prototype based classification of vectorial and proximity data. Neurocomputing, 154, 208216CrossRefGoogle Scholar
Schleif, F. M., Chen, H. & Tino, P. (2015). Incremental probabilistic classification vector machine with linear costs. In Proceedings of IJCNN (Vol. 2015).CrossRefGoogle Scholar
Schwarz, A. J. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464CrossRefGoogle Scholar
Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2001). Alignment-based recognition of shape outlines. In International workshop on visual form (pp. 606–618). Springer.CrossRefGoogle Scholar
Steinley, D. K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} -means clustering: A half-century synthesis. British Journal of Mathematical and Statistical Psychology, (2006). 59, 134CrossRefGoogle Scholar
Steinley, D. Stability analysis in K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}-means clustering. British Journal of Mathematical and Statistical Psychology, (2008). 61, 255273CrossRefGoogle Scholar
Steinley, D., Brusco, M. J. Initializing K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} -means batch clustering: A critical evaluation of several techniques. Journal of Classification, (2007). 24, 99121CrossRefGoogle Scholar
Steinley, D., Brusco, M. J. (2011). Choosing the number of clusters in K-means clustering. Psychological Methods, 16 (3), 28529721728423CrossRefGoogle Scholar
Steinley, D., Hubert, L. (2008). Order constrained solutions in K-means clustering: Even better than being globally optimal. Psychometrika, 73 (4), 647664CrossRefGoogle Scholar
Sugar, C. A., James, G. M. (2003). Finding the number of clusters in a dataset: An information-theoretic approach. Journal of the American Statistical Asssociation, 98, 750762CrossRefGoogle Scholar
Takane, Y., Young, F., de Leeuw, J. (1976). Non-metric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42, 767CrossRefGoogle Scholar
Tibshirani, R., Walther, G., Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society B, 63, 411423CrossRefGoogle Scholar
Vera, J. F. (2017). Distance stability analysis in multidimensional scaling using the jackknife method. British Journal of Mathematical and Statistical Psychology, 70, 2541CrossRefGoogle ScholarPubMed
Vera, J. F., Macías, R. Variance-based cluster selection criteria in a K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} -means framework for one-mode dissimilarity data. Psychometrika, (2017). 82 (2), 27529428194550CrossRefGoogle Scholar
Vera, J. F., Macías, R., Angulo, J. M. (2008). Non-stationary spatial covariance structure estimation in oversampled domains by cluster differences scaling with spatial constraints. Stochastic Environmental Research and Risk Assessment, 22, 95106CrossRefGoogle Scholar
Vera, J. F., Macías, R., Angulo, J. M. (2009). A latent class MDS model with spatial constraints for non-stationary spatial covariance estimation. Stochastic Environmental Research and Risk Assessment, 23 (6), 769779CrossRefGoogle Scholar
Vera, J. F., Macías, R., Heiser, W. J. (2009). A latent class multidimensional scaling model for two-way one-mode continuous rating dissimilarity data. Psychometrika, 74 (2), 297315CrossRefGoogle Scholar
Vera, J. F., Macías, R., Heiser, W. J. (2009). A dual latent class unfolding model for two-way two-mode preference rating data. Computational Statistics and Data Analysis, 53 (8), 32313244CrossRefGoogle Scholar
Vera, J. F., Macías, R., Heiser, W. J. (2013). Cluster differences unfolding for two-way two-mode preference rating data. Journal of Classification, 30, 370396CrossRefGoogle Scholar
Witten, D. M., Tibshirani, R. (2010). A framework for feature selection in clustering. Journal of the American Statistical Association, 105 (490), 713726208115102930825CrossRefGoogle ScholarPubMed
Zhang, Y., Mandziuk, J., Quek, C. H., Goh, B. W. (2017). Curvature-based method for determining the number of clusters. Information Sciences, 415, 414428CrossRefGoogle Scholar
Supplementary material: File

Vera and Macías supplementary material

Tables 1-7
Download Vera and Macías supplementary material(File)
File 54.9 KB