Published online by Cambridge University Press: 01 January 2025
In this article, we analyse the usefulness of multidimensional scaling in relation to performing K-means clustering on a dissimilarity matrix, when the dimensionality of the objects is unknown. In this situation, traditional algorithms cannot be used, and so K-means clustering procedures are being performed directly on the basis of the observed dissimilarity matrix. Furthermore, the application of criteria originally formulated for two-mode data sets to determine the number of clusters depends on their possible reformulation in a one-mode situation. The linear invariance property in K-means clustering for squared dissimilarities, together with the use of multidimensional scaling, is investigated to determine the cluster membership of the observations and to address the problem of selecting the number of clusters in K-means for a dissimilarity matrix. In particular, we analyse the performance of K-means clustering on the full dimensional scaling configuration and on the equivalently partitioned configuration related to a suitable translation of the squared dissimilarities. A Monte Carlo experiment is conducted in which the methodology examined is compared with the results obtained by procedures directly applicable to a dissimilarity matrix.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.