Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:40:56.996Z Has data issue: false hasContentIssue false

A Nonparametric Multidimensional Latent Class IRT Model in a Bayesian Framework

Published online by Cambridge University Press:  01 January 2025

Francesco Bartolucci*
Affiliation:
Università di Perugia
Alessio Farcomeni
Affiliation:
Sapienza - Università di Roma
Luisa Scaccia
Affiliation:
Università di Macerata
*
Correspondence should be made to Francesco Bartolucci, Dipartimento di Economia, Università di Perugia, Via A. Pascoli 20, 06123, Perugia, Italy. Email: francesco.bartolucci@unipg.it

Abstract

We propose a nonparametric item response theory model for dichotomously-scored items in a Bayesian framework. The model is based on a latent class (LC) formulation, and it is multidimensional, with dimensions corresponding to a partition of the items in homogenous groups that are specified on the basis of inequality constraints among the conditional success probabilities given the latent class. Moreover, an innovative system of prior distributions is proposed following the encompassing approach, in which the largest model is the unconstrained LC model. A reversible-jump type algorithm is described for sampling from the joint posterior distribution of the model parameters of the encompassing model. By suitably post-processing its output, we then make inference on the number of dimensions (i.e., number of groups of items measuring the same latent trait) and we cluster items according to the dimensions when unidimensionality is violated. The approach is illustrated by two examples on simulated data and two applications based on educational and quality-of-life data.

Type
Original Paper
Copyright
Copyright © 2017 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. Petrov, B. N. & Csaki, F. (1973). Information theory and an extension of the maximum likelihood principle. Second international symposium of information theory Budapest: Akademiai Kiado 267281Google Scholar
Bacci, S. & Bartolucci, F. (2016). Two-tier latent class IRT models in R. The R Journal 8, 139166CrossRefGoogle Scholar
Bacci, S. Bartolucci, F. & Gnaldi, M. (2014). A class of multidimensional latent class IRT models for ordinal polytomous item responses. Communication in Statistics - Theory and Methods 43, 787800CrossRefGoogle Scholar
Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika 72, 141157CrossRefGoogle Scholar
Bartolucci, F. Bacci, S. & Gnaldi, M. (2015). Statistical analysis of questionnaires: A unified approach based on Stata and R Boca Raton, FL: Chapman and Hall/CRC PressCrossRefGoogle Scholar
Bartolucci, F., Bacci, S., & Gnaldi, M. (2016). MultiLCIRT: multidimensional latent class item response theory models. In R package version, version 2.10. https://cran.r--project.org/web/packages/MultiLCIRT/index.html.Google Scholar
Bartolucci, F. & Forcina, A. (2005). Likelihood inference on the underlying structure of IRT models. Psychometrika 70, 3143CrossRefGoogle Scholar
Bartolucci, F. Scaccia, L. & Farcomeni, A. (2012). Bayesian inference through encompassing priors and importance sampling for a class of marginal models for categorical data. Computational Statistics and Data Analysis 56, 40674080CrossRefGoogle Scholar
Béguin, A. A. & Glas, CAW (2001). MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika 66, 541561CrossRefGoogle Scholar
Birnbaum, A. Lord, F. M. & Novick, M. R. (1968). Some latent trait models and their use in inferring an examinee’s ability. Statistical theories of mental test scores Reading, MA: Addison-Wesley 395479Google Scholar
Bock, R. Gibbons, R. D. & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement 12, 261280CrossRefGoogle Scholar
Bolt, D. M. Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement 27, 395414CrossRefGoogle Scholar
Chalmers, P., Pritikin, J., Robitzsch, A., Zoltak, M., Kim, K., Falk, C. F., & Meade, A. (2017). MIRT: Multidimensional item response theory. In R package version, version 1.23. https://cran.r--project.org/web/packages/mirt/index.html.Google Scholar
Christensen, K. B. Bjorner, J. B. Kreiner, S. Petersen, J. H. (2002). Testing unidimensionality in polytomous Rasch models. Psychometrika 67, 563574CrossRefGoogle Scholar
Costantini, M. Musso, M. Viterbori, P. Bonci, F. Del Mastro, L. Garrone, O. Venturini, M. & Morasso, G. (1999). Detecting psychological distress in cancer patients: Validity of the Italian version of the hospital anxiety and depression scale. Support Care Cancer 7, 121127CrossRefGoogle ScholarPubMed
Diebolt, J. & Robert, C. (1994). Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society, Series B 56, 363375CrossRefGoogle Scholar
Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61, 215231CrossRefGoogle Scholar
Graham, R. L. Knuth, D. E. & Patashnik, O. (1988). Concrete mathematics: A foundation for computer science Reading, MA: Addison-WesleyGoogle Scholar
Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711732CrossRefGoogle Scholar
Green, P. J. & Richardson, S. (2001). Hidden Markov models and disease mapping. Journal of the American Statistical Association 97, 10551070CrossRefGoogle Scholar
Hambleton, R. K. & Swaminathan, H. (1985). Item response theory: Principles and applications Boston: Kluwer NijhoffCrossRefGoogle Scholar
Hojtink, H. & Molenaar, I. W. (1997). A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks. Psychometrika 62, 171189CrossRefGoogle Scholar
Hurvich, C. M. & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika 76, 297307CrossRefGoogle Scholar
Junker, B. W. & Sijtsma, K. (2001). Nonparametric item response theory in action: An overview of the special issue. Applied Psychological Measurement 25, 211220CrossRefGoogle Scholar
Karabatsos, G. (2001). The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. Journal of Applied Measurement 2, 389423Google ScholarPubMed
Kass, R. E. & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association 90, 773795CrossRefGoogle Scholar
Klugkist, I. Kato, B. & Hoijtink, H. (2005). Bayesian model selection using encompassing priors. Statistica Nederlandica 59, 5769CrossRefGoogle Scholar
Kuo, T. & Sheng, Y. (2015). Bayesian estimation of a multi-unidimensional graded response IRT model. Behaviormetrika 42, 7994CrossRefGoogle Scholar
Lazarsfeld, P. F. & Henry, N. W. (1968). Latent structure analysis Boston: Houghton MifflinGoogle Scholar
Lindley, D. V. (1957). A statistical paradox. Biometrika 44, 187192CrossRefGoogle Scholar
Lindsay, B. Clogg, C. & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association 86, 96107CrossRefGoogle Scholar
Martin-Löf, P. (1973). Statistiska modeller Stockholm: Institütet för Försäkringsmatemetik och Matematisk Statistisk vid Stockholms UniversitetGoogle Scholar
Pan, J. C. & Huang, G. H. (2014). Bayesian inferences of latent class models with an unknown number of classes. Psychometrika 79, 621646CrossRefGoogle ScholarPubMed
Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the IV Berkeley Symposium on Mathematical Statistics and Probability 4, 321333Google Scholar
Reckase, M. D. (2009). Multidimensional item-response theory New York: SpringerCrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461464CrossRefGoogle Scholar
Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statistics 22, 17011762Google Scholar
Tuyl, F. Gerlach, R. & Mengersen, K. (2009). Posterior predictive arguments in favor of the Bayes–Laplace prior as the consensus prior for binomial and multinomial parameters. Bayesian Analysis 4, 151158Google Scholar
Van Onna, MJH (2002). Bayesian estimation and model selection in ordered latent class models for polytomous items. Psychometrika 67, 519538CrossRefGoogle Scholar
Verhelst, N. D. (2001). Testing the unidimensionality assumption of the Rasch model. Methods of Psychological Research Online 6, 231271Google Scholar
Vermunt, J. K. (2001). The use of restricted latent class models for defining and testing nonparametric and parametric item response theory models. Applied Psychological Measurement 25, 283294CrossRefGoogle Scholar
von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology 61, 287307CrossRefGoogle ScholarPubMed
Zigmond, A. S. & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrika Scandinavica 67, 361370CrossRefGoogle ScholarPubMed