Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T08:51:33.875Z Has data issue: false hasContentIssue false

Minimum φ-Divergence Estimation in Constrained Latent Class Models for Binary Data

Published online by Cambridge University Press:  01 January 2025

A. Felipe
Affiliation:
Complutense University of Madrid
P. Miranda*
Affiliation:
Complutense University of Madrid
L. Pardo
Affiliation:
Complutense University of Madrid
*
Correspondence should be made to P. Miranda, Department of Statistics and Operations Research, Faculty of Mathematics, Complutense University of Madrid, 28040 Madrid, Spain. Email: pmiranda@mat.ucm.es

Abstract

The main purpose of this paper is to introduce and study the behavior of minimum ϕ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi $$\end{document}-divergence estimators as an alternative to the maximum-likelihood estimator in latent class models for binary items. As it will become clear below, minimum ϕ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi $$\end{document}-divergence estimators are a natural extension of the maximum-likelihood estimator. The asymptotic properties of minimum ϕ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi $$\end{document}-divergence estimators for latent class models for binary data are developed. Finally, to compare the efficiency and robustness of these new estimators with that obtained through maximum likelihood when the sample size is not big enough to apply the asymptotic results, we have carried out a simulation study.

Type
Original Paper
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abar, B., & Loken, E. (2010). Self-regulated learning and self-directed study in a pre-college sample. Learning and Individual Differences, 20, 2529.CrossRefGoogle Scholar
Berkson, J. (1980). Minimum chi-square, not maximum likelihood!. Annals of Statisitcs, 8(3), 482485.Google Scholar
Biemer, P. (2011). Latent class analysis and survey error. Hoboken, NJ: Wiley.Google Scholar
Caldwell, L., Bradley, S., & Coffman, D. (2009). A person-centered approach to individualizing a scool-based universal preventive intervention. American Journal of Drug and Alcohol Abuse, 35(4), 214219.CrossRefGoogle ScholarPubMed
Clogg, C. (1995). Latent class models: Recent developments and prospects for the future. In Arminger, C.G., & Sobol, M. (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 311352). New York: Plenum.CrossRefGoogle Scholar
Coffman, D., Patrick, M., Polen, L., Rhoades, B., & Ventura, A. (2007). Why do high school seniors drink? Implication for a targeted approach to intervention. Prevention Science, 8, 18.CrossRefGoogle ScholarPubMed
Coleman, J.S. (1964). Introduction to mathematical sociology. New York: Free Press.Google Scholar
Collins, L., & Lanza, S. (2010). Latent class and latent transition analysis for the social, behavioral, and health sciences. New York: Wiley.Google Scholar
Cressie, N., Pardo, L. (2002). Phi-divergence statisitcs. In Elshaarawi, A.H., & Plegorich, W.W. (Eds.), Encyclopedia of environmetrics (pp. 15511555). New York: Wiley.Google Scholar
Cressie, N., & Read, T.R.C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society, Series B, 8, 440464.CrossRefGoogle Scholar
Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observations. Studia Scientiarum Mathematicarum Hungarica, 2, 299318.Google Scholar
Feldman, B., Masyn, K., & Conger, R. (2009). New approaches to studying behaviors: A comparison of methods for modelling longitudinal, categorical and adolescent drinking data. Development Psycology, 45(3), 652676.CrossRefGoogle ScholarPubMed
Formann, A. (1976). Schätzung der Parameter in Lazarsfeld Latent-Class Analysis. In Res. Bull., number 18. Institut für Psycologie der Universität Wien. In German.Google Scholar
Formann, A. (1977). Log-linear latent class analyse. In Res. Bull., number 20. Institut für Psycologie der Universität Wien. In German.Google Scholar
Formann, A. (1978). A note on parametric estimation for Lazarsfeld’s latent class analysis. Psychometrika, 48, 123126.CrossRefGoogle Scholar
Formann, A. (1982). Linear logistic latent class analysis. Biometrical Journal, 24, 171190.CrossRefGoogle Scholar
Formann, A. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematics and Statistical Psicology, 38, 87111.CrossRefGoogle Scholar
Formann, A. (1992). Linear logistic latent class analysis for polytomous data. Journal of the Amearican Statistical Association, 87, 476486.CrossRefGoogle Scholar
Gerber, M., Witterkind, A., Grote, G., & Staffelbach, B. (2009). Exploring types of career orientation: A latent class analysis approach. Journal of Vocational Behavior, 75, 303318.CrossRefGoogle Scholar
Gill, P. E. & Murray, W. (1979). Conjugate-gradient methods for large-scale nonlinear optimization. Technical Report SOL 79–15. Department of Operations Research, Stanford University.CrossRefGoogle Scholar
Goodman, L.A. (1974). Exploratory latent structure analysis using Goth identifiable and unidentifiable models. Biometrika, 61, 215231.CrossRefGoogle Scholar
Hagenaars, J.A., & Cutcheon, A.L.M. (2002). Applied latent class analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hooke, R., & Jeeves, T.A. (1961). Direct search solution of numerical and statistical problems. Journal of the Association for Computing Machinery, 8, 212229.CrossRefGoogle Scholar
Langeheine, R., & Rost, J. (1988). Latent trait and latent class models. New York: Plenum Press.CrossRefGoogle Scholar
Laska, M., Pash, K., Lust, K., Story, M., & Ehlinger, E. (2009). Latent class analysis of lifestyle characteristics and health risk behaviors among college youth. Prevention Sciences, 10, 376386.CrossRefGoogle ScholarPubMed
Lazarsfeld, P., & Henry, N. (1968). Latent structure analysis. Boston: Houghton-Mifflin.Google Scholar
Lazarsfeld, P. (1950). The logical and mathematical foundation of latent structure analysis. Studies in social psycology in world war II. Princeton, NJ: Princeton University Press (pp. 362412.Google Scholar
McHugh, R. (1956). Efficient estimation and local identification in latent class analysis. Psychometrika, 21, 331347.CrossRefGoogle Scholar
Morales, D., Pardo, L., & Vajda, I. (1995). Asymptotic divergence of estimates of discrete distributions. Jounal of Statistical Planning and Inference, 48, 347369.CrossRefGoogle Scholar
Nylund, K., Bellmore, A., Nishina, A., & Grahan, S. (2007). Subtypes, severity and structural stability of peer victimization: What does latent class analysis say?. Child Prevention, 78, 17061722.Google ScholarPubMed
Pardo, L. (2006). Statistical inference based on divergence measures. New York: Chapman & Hall CRC.Google Scholar
Powell, M. (1970). A hybrid method for nonlinear algebraic equations. In Rabinowitz, P. (Eds.), Numerical methods for nonlinear algebraic equations. London: Gordon and Breach.Google Scholar
Rost, J., & Langeheine, R. (1997). Applications of latent trait and latent class models in the social sciences. Münster: Waxmann.Google Scholar