Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T11:49:44.678Z Has data issue: false hasContentIssue false

Measuring the Ability of Transitive Reasoning, using Product and Strategy Information

Published online by Cambridge University Press:  01 January 2025

Samantha Bouwmeester*
Affiliation:
Tilburg University
Klaas Sijtsma
Affiliation:
Tilburg University
*
Requests for reprints should be sent to Samantha Bouwmeester, Department of Methodology and Statistics FSW, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands, Phone: 31134663270, Fax: 31134663002, Email: s.bouwmeester@uvt.nl

Abstract

Cognitive theories disagree about the processes and the number of abilities involved in transitive reasoning. This led to controversies about the influence of task characteristics on individuals' performance and the development of transitive reasoning. In this study, a computer test was constructed containing 16 transitive reasoning tasks having different characteristics with respect to presentation form, task format, and task content. Both product and strategy information were analyzed to measure the performance of 6- to 13-year-old children. Three methods (MSP, DETECT, and Improved DIMTEST) were used to determine the number of abilities involved and to test the assumptions imposed on the data by item response models. Nonparametric IRT models were used to construct a scale for transitive reasoning. Multiple regression was used to determine the influence of task characteristics on the difficulty level of the tasks. It was concluded that: (1) the qualitatively distinct abilities predicted by Piaget's theory could not be distinguished by means of different dimensions in the data structure; (2) transitive reasoning could be described by one ability, and some task characteristics influenced the difficulty of a task; and (3) strategy information provided a stronger scale than product information.

Type
Application Reviews And Case Studies
Copyright
Copyright © 2004 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouwmeester, S., Aalbers, T. (2002). Tranred. Tilburg: Tilburg UniversityGoogle Scholar
Bouwmeester, S., Sijtsma, K., Vermunt, J.K. (2004). Latent class regression analysis to describe cognitive developmental phenomena: an application to transitive reasoning. European Journal of Developmental Psychology, 1, 6786CrossRefGoogle Scholar
Braine, M.D.S. (1959). The onthogeny of certain logical operations: Piaget's formulation examined by nonverbal methods. Monographs for the Society for Research in Child Development, 27, 4163CrossRefGoogle Scholar
Brainerd, C.J. (1977). Response criteria in concept development research. Child Development, 48, 360366CrossRefGoogle Scholar
Brainerd, C.J., Kingma, J. (1984). Do children have to remember to reason? A fuzzy-trace theory of transitivity development. Developmental Review, 4, 311377CrossRefGoogle Scholar
Brainerd, C.J., Kingma, J. (1985). On the independence of short-term memory and working memory in cognitive development. Cognitive Psychology, 17, 210247CrossRefGoogle Scholar
Brainerd, C.J., Reyna, V.F. (1992). The memory independence effect: What do the data show? What do the theories claim?. Developmental Review, 12, 164186CrossRefGoogle Scholar
Bryant, P.E., Trabasso, T. (1971). Transitive inferences and memory in young children. Nature, 232, 456458CrossRefGoogle ScholarPubMed
Chapman, M., Lindenberger, U. (1988). Functions, operations, and decalage in the development of transitivity. Developmental Psychology, 24, 542551CrossRefGoogle Scholar
Chapman, M., Lindenberger, U. (1992). Transitivity judgments, memory for premises, and models of children's reasoning. Developmental Review, 12, 124163CrossRefGoogle Scholar
Clark, H.H. (1969). Linguistic processes in deductive reasoning. Journal of Educational Psychology, 76, 387404Google Scholar
DeSoto, C.B., London, M., Handel, S. (1965). Social reasoning and spatial paralogic. Journal of Social Psychology, 2, 513521Google Scholar
Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359374CrossRefGoogle Scholar
Fischer, G.H. (1995). The linear logistic test model. In Fischer, G.H., Molenaar, I.W. (Eds.), Rasch Models, Foundations, Recent Developments, and Applications (pp. 131155). New York: Springer-VerlagGoogle Scholar
Grayson, D.A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio. Psychometrika, 53, 383392CrossRefGoogle Scholar
Green, K.E., Smith, R.M. (1987). A comparison of two methods of decomposing item difficulties. Journal of Educational Statistics, 12, 369381CrossRefGoogle Scholar
Hatti, J., Krakowski, K., Rogers, H.J., Swaminathan, H. (1996). An assessment of Stout's index of essential unidimmensionality. Applied Psychological Measurement, 20, 114CrossRefGoogle Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W. (1995). Selection of unidimensional scales from a multidimensional item bank in the polytomous Mokken IRT model. Applied Psychological Measurement, 19, 337352CrossRefGoogle Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., Junker, B.W. (1997). Stochastic ordering using the latent trait and the sumscore in polytomous IRT models. Psychometrika, 62, 331348CrossRefGoogle Scholar
Hosenfield, B., Van der Maas, H. L.J., van den Boom, D.C. (1997). Detecting bimodality in the analogical reasoning performance of elementary schoolchildren. International Journal of Behavioral Development, 20, 529547CrossRefGoogle Scholar
Huttenlocher, J. (1968). Constructing spatial images. Psychological Review, 75, 550560CrossRefGoogle Scholar
Huttenlocher, J., Higgens, E.T. (1971). Adjectives, comparatives and syllogisms. Psychological Review, 78, 487504CrossRefGoogle Scholar
Junker, B.W. (1993). Conditional association, essential independence, and monotone unidimensional item response models. The Annals of Statistics, 21, 13591378CrossRefGoogle Scholar
Kelderman, H., Rijkes, C. P.M. (1994). Loglinear multidimensional IRT models for polytomously scores items. Psychometrika, 59, 149176CrossRefGoogle Scholar
McDonald, R.P. (1985). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6, 379396CrossRefGoogle Scholar
Mokken, R.J. (1971). A Theory and Procedure of Scale Analysis. The Hague: MoutonCrossRefGoogle Scholar
Mokken, R.J., Lewis, C., Sijtsma, K. (1986). Rejoinder to “the Mokken scale: A critical discussion.”. Applied Psychological Measurement, 10, 279285CrossRefGoogle Scholar
Molenaar, I.W., Sijtsma, K. (2000). User's manual MSP5 for Windows. A program for Mokken Scale analysis for Polytomous items [software manual]. Groningen, The Netherlands: iecProGammaGoogle Scholar
Murray, J.P., Youniss, J. (1968). Achievement of inferential transitivity and its relation to serial ordering. Child Development, 39, 12591268CrossRefGoogle ScholarPubMed
Nandakumar, R., Stout, W. (1993). Refinements of Stout's procedure for assessing latent trait unidimensionality. Journal of Educational Statistics, 18, 4168Google Scholar
Nandakumar, R., Yu, F., Li, H.H., Stout, W. (1998). Assessing unidimensionality of polytomous data. Applied Psychological Measurement, 22, 99115CrossRefGoogle Scholar
Piaget, J. (1961). Les Méchanicismes Perceptives. Paris: Presses Universitaires de FranceGoogle Scholar
Piaget, J., Inhelder, B. (1941). Le Développement des Quantités Chez l'Enfant. Neuchatel: Delachaux et NiestléGoogle Scholar
Piaget, J., Inhelder, B., Szeminska, A. (1948). La Géométric Spontanée de l'Enfant. Paris: Presses Universitaires de FranceGoogle Scholar
Piaget, J., Szeminska, A. (1941). La Genèse du Nombre Chez l'Enfant. Neuchatel: Delachaux et NiestléGoogle Scholar
Quinton, G., Fellows, B. (1975). “Perceptual” strategies in the solving of three-term series problems. British Journal of Psychology, 66, 6978CrossRefGoogle Scholar
Reckase, M.A. (1997). A linear logistic multidimensional model for dichotomous item response data. In van der Linden, W.J., Hambleton, R.K. (Eds.), Handbook of Modern Item Response Theory (pp. 271286). New York: Springer-VerlagCrossRefGoogle Scholar
Reyna, V.F., Brainerd, C.J. (1990). Fuzzy processing in transitivity development. Annals of Operations Research, 23, 3763CrossRefGoogle Scholar
Roussos, L.A., Stout, W., Marden, J. (1998). Using new proximity measures with hierarchical cluster analysis to detect multidimensionality. Journal of Educational Measurement, 35, 130CrossRefGoogle Scholar
Scheiblechner, H. (1972).Das lernen un lösen complexer Denkaufgaben (Learning and solving complex thought problems). Zeitschrift für experimentelle und angewandte Psychologie, 19, 481520Google Scholar
Sijtsma, K., Meijer, R.R. (1992). A method for investigating the intersection of item response functions in Mokken's nonparametric IRT model. Applied Psychological Measurement, 16, 149157CrossRefGoogle Scholar
Sijtsma, K., Molenaar, I.W. (2002). Introduction to Nonparametric Item Response Theory. Thousand Oaks, CA: Sage PublicationsCrossRefGoogle Scholar
Smedslund, J. (1963). Development of concrete transitivity of length in children. Child Development, 34, 389405Google ScholarPubMed
Smedslund, J. (1969). Psychological diagnostics. Psychological Bulletin, 71, 237248CrossRefGoogle ScholarPubMed
Sternberg, R.J. (1980). Representation and process in linear syllogistic reasoning. Journal of Experimental Psychology, 109, 119159CrossRefGoogle Scholar
Sternberg, R.J. (1980). The development of linear syllogistic reasoning. Journal of Experimental Child Psychology, 29, 340356CrossRefGoogle Scholar
Sternberg, R.J., Weil, E.M. (1980). An aptitude × strategy interaction in linear syllogistic reasoning. Journal of Educational Psychology, 72, 226239CrossRefGoogle Scholar
Stout, W. (1993). DIMTEST. Urbana-Champaign, IL: The William Stout Institute for MeasurementGoogle Scholar
Stout, W. (1996). DETECT. Urbana-Champaign, IL: The William Stout Institute for MeasurementGoogle Scholar
Stout, W., Froelich, A.G., Gao, F. (2001). Using resampling methods to produce an improved DIMTEST procedure. In Boomsma, A., van Duijn, M.A.J., Snijders, T.A.B. (Eds.), Essays on Item Response Theory (pp. 357375). New York: SpringerCrossRefGoogle Scholar
Stout, W., Habing, B., Douglas, J., Kim, H.R., Roussos, L.A., Zhang, J. (1996). Conditional covariance-based non-parametric multidimensionality assessment. Applied Psychological Measurement, 20, 331354CrossRefGoogle Scholar
Thomas, H., Lohaus, A., Kessler, T. (1999). Stability and change in longitudinal water-level task performance. Developmental Psychology, 35, 10241037CrossRefGoogle ScholarPubMed
Trabasso, T. (1977). The role of memory as a system in making transitive inferences. In Kail, R.V., Hagen, J.W., Belmont, J.M. (Eds.), Perspectives on the Development of Memory and Cognition (pp. 333366). Hillsdale, NJ: ErlbaumGoogle Scholar
Trabasso, T., Riley, C.A., Wilson, E.G. (1975). The representation of linear order and spatial strategies in reasoning: a developmental study. In Falmagne, R.J. (Eds.), Reasoning: Representation and Process in Children and Adults (pp. 201229). Hillsdale, NJ: ErlbaumGoogle Scholar
Van Abswoude, A. A.H., Van der Ark, L.A., Sijtsma, K. (2004). A comparative study on test dimensionality assessment procedures under nonparametric IRT models. Applied Psychological Measurement, 28, 324CrossRefGoogle Scholar
Verweij, A.C. (1999). Scaling transitive inference in 7–12 years old children. the Netherlands: Vrÿe Universiteit AmsterdamGoogle Scholar
Verweij, A.C., Sijtsma, K., Koops, W. (1999). An ordinal scale for transitive reasoning by means of a deductive strategy. International Journal of Behavioral Development, 23, 241264CrossRefGoogle Scholar
Wright, B.C. (2001). Reconceptualizing the transitive inference ability: A framework for existing and future research. Developmental Review, 21, 375422CrossRefGoogle Scholar
Zhang, J., Stout, W. (1999). Conditional covariance structure of generalized compensatory multidimensional items. Psychometrika, 64, 129152CrossRefGoogle Scholar
Zhang, J., Stout, W. (1999). The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika, 64, 213249CrossRefGoogle Scholar