Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T08:55:12.035Z Has data issue: false hasContentIssue false

Lower Bounds to the Reliabilities of Factor Score Estimators

Published online by Cambridge University Press:  01 January 2025

David J. Hessen*
Affiliation:
Utrecht University
*
Correspondence should be made to David J. Hessen, Department of Methodology and Statistics, Utrecht University, Padualaan 14, PO Box 80.140, 3508 TC Utrecht, The Netherlands. Email: D.J.Hessen@uu.nl

Abstract

Under the general common factor model, the reliabilities of factor score estimators might be of more interest than the reliability of the total score (the unweighted sum of item scores). In this paper, lower bounds to the reliabilities of Thurstone’s factor score estimators, Bartlett’s factor score estimators, and McDonald’s factor score estimators are derived and conditions are given under which these lower bounds are equal. The relative performance of the derived lower bounds is studied using classic example data sets. The results show that estimates of the lower bounds to the reliabilities of Thurstone’s factor score estimators are greater than or equal to the estimates of the lower bounds to the reliabilities of Bartlett’s and McDonald’s factor score estimators.

Type
Original paper
Copyright
Copyright © 2016 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. D., & Rubin, H. (1956). Statistical inference in factor analysis. In Proceedings of the third Berkeley symposium of mathematical statistics and probability (Vol. 5, pp. 111–150)..Google Scholar
Bartlett, M. S.. (1937). The statistical conception of mental factors. British Journal of Psychology, 28, 97104.Google Scholar
Bentler, P. M.. (2009). Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika, 74, 137143. doi:10.1007/s11336-008-9100-1 2786226.CrossRefGoogle ScholarPubMed
Cronbach, L. J.. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297334. doi:10.1007/BF02310555.CrossRefGoogle Scholar
De Leeuw, J.. (1983). Models and methods for the analysis of correlation coefficients. Journal of Econometrics, 22 1–2113137. doi:10.1016/0304-4076(83)90096-9.CrossRefGoogle Scholar
Grice, J. W.. (2001). Computing and evaluating factor scores. Psychological Methods, 6, 430450. doi:10.1037/1082-989X.6.4.430.CrossRefGoogle ScholarPubMed
Guttman, L.. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10(4), 255282. doi:10.1007/BF02288892.CrossRefGoogle ScholarPubMed
Heise, D. R., Bohrnstedt, G. W.,Borgatta, E. F.. (1970). Validity, invalidity, and reliability. Sociological methodology 1970. San Francisco: Jossey-Bass 104129.Google Scholar
Henderson, H. V., & Searle, S. R.. (1981). On deriving the inverse of a sum of matrices. SIAM Review, 23, 5360. doi:10.1137/1023004.CrossRefGoogle Scholar
Lord, F. M., & Novick, M. R., (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.Google Scholar
McDonald, R. P.. (1978). Generalizability in factorable domains: “Domain validity and generalizability”: 1. Educational and Psychological Measurement, 38, 7579. doi:10.1177/001316447803800111.CrossRefGoogle Scholar
McDonald, R. P.. (1981). Constrained least squares estimators of oblique common factors. Psychometrika, 46, 337341. doi:10.1007/BF02293740.CrossRefGoogle Scholar
McDonald, R. P., (1999). Test theory: A unified treatment. Hillsdale, MI: Erlbaum.Google Scholar
R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.Google Scholar
Revelle, W. (2014). psych: Procedures for personality and psychological research (R package version 1.4.3)..Google Scholar
Revelle, W., & Zinbarg, R. E.. (2009). Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika, 74, 145154. doi:10.1007/s11336-008-9102-z.CrossRefGoogle Scholar
Schmid, J. J., & Leiman, J. M.. (1957). The development of hierarchical factor solutions. Psychometrika, 22(1), 8390. doi:10.1007/BF02289209.CrossRefGoogle Scholar
Sijtsma, K.. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74, 107120. doi:10.1007/s11336-008-9101-0.CrossRefGoogle ScholarPubMed
ten Berge, J. M. F., Krijnen, W., Wansbeek, T., & Shapiro, A.. (1999). Some new results on correlation-preserving factor scores prediction methods. Linear Algebra and Its Applications, 289, 311318. doi:10.1016/S0024-3795(97)10007-6.CrossRefGoogle Scholar
ten Berge, J. M. F., Snijders, T. A. B., & Zegers, F. E.. (1981). Computational aspects of the greatest lower bound to reliability and constrained minimum trace factor analysis. Psychometrika, 46, 201213. doi:10.1007/BF02293900.CrossRefGoogle Scholar
ten Berge, J. M. F., & Sočan, G.. (2004). The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality. Psychometrika, 69, 613625. doi:10.1007/BF02289858.CrossRefGoogle Scholar
ten Berge, J. M. F., & Zegers, F. E.. (1978). A series of lower bounds to the reliability of a test. Psychometrika, 34(4), 575579. doi:10.1007/BF02293815.CrossRefGoogle Scholar
Thompson, B.. (1993). Calculation of standardized, noncentered factor scores: An alternative to conventional factor scores. Perceptual and Motor Skills, 77(3), 11281130. doi:10.2466/pms.1993.77.3f.1128.CrossRefGoogle Scholar
Thomson, G. H., (1946). The factorial analysis of human ability. 2New York: Houghton Mifflin.Google Scholar
Thurstone, L. L., (1935). The vectors of mind. Chicago: University of Chicago Press.Google Scholar
Warner, W. L., & Meeker, , Eels, Social class in America: A manual of procedure for the measurement of social status 1960 New York: Harper.Google Scholar
Woodhouse, B., & Jackson, P. H.. (1977). Lower bounds for the reliability of the total score on a test composed of non-homogeneous items: II: A search procedure to locate the greatest lower bound. Psychometrika, 42, 579591. doi:10.1007/BF02295980.CrossRefGoogle Scholar
Zinbarg, R. E., Revelle, W., Yovel, I., & Li, W. Cronbach’s α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, Revelles β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, and McDonalds ωH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{H}$$\end{document}: their relations with each other and two alternative conceptualizations of reliability Psychometrika 2005 70, 123133. doi:10.1007/s11336-003-0974-7.CrossRefGoogle Scholar