Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T21:54:05.293Z Has data issue: false hasContentIssue false

Likelihood Inference on the Underlying Structure of IRT Models

Published online by Cambridge University Press:  01 January 2025

Francesco Bartolucci*
Affiliation:
Università di Urbino
Antonio Forcina
Affiliation:
Università di Perugia
*
Requests for reprints should be sent to Francesco Bartolucci, Istituto di Scienze Economiche, Unversità du Urbino, Via Saffi, 42, 61029 Urbino, Italy. E-mail: Francesco.Bartolucci@uniurb.it

Abstract

The assumptions underlying item response theory (IRT) models may be expressed as a set of equality and inequality constraints on the parameters of a latent class model. It is well known that the same assumptions imply that the parameters of the manifest distribution have to satisfy a more complicated set of inequality constraints which, however, are necessary but not sufficient. In this paper, we describe how the theory for likelihood-based inference under equality and inequality constraints may be used to test the underlying assumptions of IRT models. It turns out that the analysis based directly on the latent structure is simpler and more flexible. In particular, we indicate how several interesting extensions of the Rasch model may be obtained by partial relaxation of the basic constraints. An application to a data set provided by Educational Testing Service is used to illustrate the approach.

Type
Original Paper
Copyright
Copyright © 2005 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We thank Dr. Gorman and Dr. Rogers of the Educational Testing Service for providing the data analyzed in Section 4. We also thank three reviewers for comments and suggestions.

References

Agresti, A. (1994). Simple capture-recapture models permitting unequal catchability and variable sampling effort. Biometrics, 50, 494500.CrossRefGoogle ScholarPubMed
Aitchison, J., & Silvey, S.D. (1958). Maximum likelihood estimation of parameters subject to restraints. Annals of Mathematical Statistics, 29, 813828.CrossRefGoogle Scholar
Bartolucci, F., & Forcina, A. (2000). A likelihood ratio test for MTP2 within binary variables. The Annals of Statistics, 28, 12061218.CrossRefGoogle Scholar
Bartolucci, F., & Forcina, A. (2001). The analysis of capture-recapture data with a Rasch-type model allowing for conditional dependence and multidimensionality. Biometrics, 57, 207212.CrossRefGoogle ScholarPubMed
Bartolucci, F., Forcina, A., & Dardanoni, V. (2001). Positive quadrant dependence and marginal modelling in two-way tables with ordered marginals. Journal of the American Statistical Association, 96, 14971505.CrossRefGoogle Scholar
Bergsma, W.P. (1997). Marginal Models for Categorical Data. Tilburg: Tilburg University Press.Google Scholar
Chernoff, H. (1954). On the distribution of the likelihood ratio. Annals of Mathematical Statistics, 25, 573578.CrossRefGoogle Scholar
Colombi, R., & Forcina, A. (2001). Marginal regression models for the analysis of positive association of ordinal response variables. Biometrika, 88, 10071019.CrossRefGoogle Scholar
Croon, M. (1990). Latent class analysis with ordered latent classes. British Journal of Mathematical and Statistical Psychology, 43, 171192.CrossRefGoogle Scholar
Dardanoni, V., & Forcina, A. (1998). A unified approach to likelihood inference on stochastic orderings in a nonparametric context. Journal of the American Statistical Association, 93, 11121123.CrossRefGoogle Scholar
Darroch, J.N., Fienberg, S.E., Glonek, G.F.V., & Junker, B.W. (1993). A three-sample multiple-recapture approach to census population estimation with heterogeneous catchability. Journal of the American Statistical Association, 88, 11371148.CrossRefGoogle Scholar
Glonek, G.E.V. (1996). A Class of regression models for multivariate categorical responses. Biometrika, 83, 1528.CrossRefGoogle Scholar
Hambleton, R.K., & Swaminathan, H. (1996). Item Response Theory: Principles and Applications. Boston: Kluwer Nijhoff Publishing.Google Scholar
Hemker, B.T., Sijstma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331347.CrossRefGoogle Scholar
Hoijtink, H., & Molenaar, I.W. (1997). A multidimensional item response model: constrained latent class analysis using the Gibbs sampler and posterior predictive checks. Psychometrika, 62, 171189.CrossRefGoogle Scholar
Holland, P.W., & Rosenbaum, P.R. (1986). Conditional association and unidimensionality in monotone latent variable models. The Annals of Statistics, 14, 15231543.CrossRefGoogle Scholar
Ip, E.H. (2001). Testing for local dependency in dichotomous and polytomous items response models. Psychometrika, 66, 109132.CrossRefGoogle Scholar
Ip, E.H. (2002). Locally dependent latent trait model and the Dutch identity revised. Psychometrika, 67, 367386.CrossRefGoogle Scholar
Junker, B.W., & Ellis, J.L. (1997). A characterization of monotone unidimensional latent variable models. The Annals of Statistics, 25, 13271343.CrossRefGoogle Scholar
Lindsay, B., Clogg, C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96107.CrossRefGoogle Scholar
Madansky, A. (1960). Determinal methods in latent class analysis. Psychometrika, 25, 183198.CrossRefGoogle Scholar
McLachlan, G.J., & Peel, D. (2001). Finite Mixture Models. New York: Wiley.Google Scholar
Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the IV Berkeley Symposium on Mathematical Statistics and Probability,, 4, 321333.Google Scholar
Rosenbaum, P.R. (1984). Testing the conditional independence and monotonicity assumption of item response theory. Psychometrika, 49, 425435.CrossRefGoogle Scholar
Settimi, R., & Smith, J.W. (2000). Geometry, moments and conditional independence trees with hidden variables. The Annals of Statistics, 28, 11791205.CrossRefGoogle Scholar
Shapiro, A. (1985). Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika, 72, 133144.CrossRefGoogle Scholar
Shapiro, A. (1988). Towards a unified theory of inequality constrained testing in multivariate analysis. International Statistical Review, 56, 11371156.CrossRefGoogle Scholar
Sijstma, K. (2001). Developments in measurement of persons and items by means of item response models. Behaviormetrika, 28, 6594.Google Scholar
van der Heijden, P., Hart, t’H., & Dessens, J. (1997). A parametric bootstrap procedure to perform statistical tests on a LCA of anti-social behaviour. In Rost, J., & Langeheine, R. (Eds.), Applications of Latent Trait and Latent Class Models in the Social Sciences. Berlin: Waxman Münster.Google Scholar
Vermunt, J.K. (1999). A general class of non-parametric models for ordinal categorical data. Sociological Methodology, 29, 187224.CrossRefGoogle Scholar
Vermunt, J.K. (2001). The use of restricted latent class model for defining and testing non parametric and parametric item response theory models.. Applied sychological Measurement, 25, 283294.CrossRefGoogle Scholar
Vermunt, J.K., & Magidson, J. (2003). Latent class analysis. In Lewis-Beck, M., Bryman, A., & Liao, T.F. (Eds.), Encyclopedia of Research Methods for the Social Sciences. NewBury Park: Sage Publications.Google Scholar