Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T00:03:43.576Z Has data issue: false hasContentIssue false

A Latent Class Unfolding Model for Analyzing Single Stimulus Preference Ratings

Published online by Cambridge University Press:  01 January 2025

Geert De Soete*
Affiliation:
University of Ghent, Belgium
Willem J. Heiser
Affiliation:
University of Leiden, The Netherlands
*
Requests for reprints should be sent to Geert De Soete, Department of Data Analysis, University of Ghent, Henri Dunantlaan 2, B-9000 Ghent, Belgium.

Abstract

A multidimensional unfolding model is developed that assumes that the subjects can be clustered into a small number of homogeneous groups or classes. The subjects that belong to the same group are represented by a single ideal point. Since it is not known in advance to which group or class a subject belongs, a mixture distribution model is formulated that can be considered as a latent class model for continuous single stimulus preference ratings. A GEM algorithm is described for estimating the parameters in the model. The M-step of the algorithm is based on a majorization procedure for updating the estimates of the spatial model parameters. A strategy for selecting the appropriate number of classes and the appropriate number of dimensions is proposed and fully illustrated on some artificial data. The latent class unfolding model is applied to political science data concerning party preferences from members of the Dutch Parliament. Finally, some possible extensions of the model are discussed.

Type
Original Paper
Copyright
Copyright © 1993 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author is supported as “Bevoegdverklaard Navorser” of the Belgian “Nationaal Fonds voor Wetenschappelijk Onderzoek”. Part of this paper was presented at the Distancia meeting held in Rennes, France, June 1992.

References

Carroll, J. D., Pruzansky, S., & Kruskal, J. B. (1980). CANDELINC: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters. Psychometrika, 45, 324.CrossRefGoogle Scholar
Coombs, C.H. (1964). A theory of data, New York: Wiley.Google Scholar
de Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. In Barra, J. R., Brodeau, F., Romier, G., & Van Cutsem, B. (Eds.), Recent developments in statistics (pp. 133145). Amsterdam: North-Holland.Google Scholar
de Leeuw, J. (1988). Convergence of the majorization method for multidimensional scaling. Journal of Classification, 5, 163180.CrossRefGoogle Scholar
de Leeuw, J., & Heiser, W. (1977). Convergence of correction-matrix algorithms for multidimensional scaling. In Lingoes, J. C. (Eds.), Geometric representations of relational data (pp. 735752). Ann Arbor, MI: Mathesis Press.Google Scholar
de Leeuw, J., & Heiser, W. (1980). Multidimensional scaling with restrictions on the configuration. In Krishnaiah, P. R. (Eds.), Multivariate Analysis-V (pp. 501522). Amsterdam: North-Holland.Google Scholar
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 138.CrossRefGoogle Scholar
De Soete, G. (1990). A latent class approach to modeling pairwise preferential choice data. In Schader, M., Gaul, W. (Eds.), Knowledge, data and computer-assisted decisions (pp. 103113). Berlin: Springer-Verlag.CrossRefGoogle Scholar
De Soete, G. (1992). Using latent class analysis in categorization research. In Van Mechelen, I., Hampton, J., Michalski, R., & Theuns, P. (Eds.), Categories and concepts: Theoretical views and inductive data analysis (pp. 309330). London: Academic Press.Google Scholar
De Soete, G., & DeSarbo, W. S. (1991). A latent class probit model for analyzing pick any/N data. Journal of Classification, 8, 4563.CrossRefGoogle Scholar
De Soete, G., & Winsberg, S. (1993). A latent class vector model for preference ratings. Journal of Classification, 10, 195218.CrossRefGoogle Scholar
De Soete, G., & Winsberg, S. (1993). A Thurstonian pairwise choice model with univariate and multivariate spline transformations. Psychometrika, 58, 233256.CrossRefGoogle Scholar
Gibson, W. A. (1959). Three multivariate models: Factor analysis, latent structure analysis and latent profile analysis. Psychometrika, 24, 229252.CrossRefGoogle Scholar
Heiser, W. J. (1981). Unfolding analysis of proximity data, The Netherlands: University of Leiden.Google Scholar
Heiser, W. J. (1987). The unfolding technique. In Legendre, P. & Legendre, L. (Eds.), Developments in numerical ecology (pp. 189221). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Heiser, W. J. (1989). Order invariant unfolding analysis under smoothness restrictions. In De Soete, G., Feger, H., & Klauer, K. C. (Eds.), New developments in psychological choice modeling (pp. 331). Amsterdam: North-Holland.CrossRefGoogle Scholar
Heiser, W. J. (1991). A generalized majorization method for least squares multidimensional scaling of pseudodistances that may be negative. Psychometrika, 56, 727.CrossRefGoogle Scholar
Heiser, W. J. (1991b). Clustering of variables to optimize the fit of a low dimensional Euclidean model. Paper presented at the 3rd meeting of the International Federation of Classification Societies, Edinburgh, Scotland.Google Scholar
Heiser, W. J., & Meulman, J. (1983). Constrained multidimensional scaling, including confirmation. Applied Psychological Measurement, 22, 139167.Google Scholar
Hope, A. C. (1968). A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society, Series B, 30, 582598.CrossRefGoogle Scholar
Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 127.CrossRefGoogle Scholar
Kruskal, J. B., Young, F. W., & Seery, J. B. (1973). How to use KYST, a very flexible program to do multidimensional scaling and unfolding, Murray Hill, NJ: Bell Laboratories.Google Scholar
Lazarsfeld, P. F., & Henry, R. W. (1968). Latent structure analysis, New York: Houghton Mifflin.Google Scholar
McLachlan, G. J. (1987). On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Applied Statistics, 36, 318324.CrossRefGoogle Scholar
McLachlan, G. J., & Basford, K. E. (1988). Mixture models, New York: Marcel Dekker.Google ScholarPubMed
Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores, Reading, MA: Addison-Wesley.Google Scholar
Meulman, J. J., & Verboon, P. (1993). Points of view analysis revisited: Fitting multidimensional structures to optimal distance components with cluster restrictions on the variables. Psychometrika, 58, 735.CrossRefGoogle Scholar
Takane, Y. (1976). A statistical procedure for the latent profile model. Japanese Psychological Research, 18, 8290.CrossRefGoogle Scholar
Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985). Statistical analysis of finite mixture distributions, Chichester: Wiley.Google Scholar
Wegman, E. J. (1972). Nonparametric probability density estimation. Technometrics, 14, 533546.CrossRefGoogle Scholar
Winsberg, S., & De Soete, G. (1993). A latent class approach to fitting the weighted Euclidean model, CLASCAL. Psychometrika, 58, 315330.CrossRefGoogle Scholar
Wolfe, J. H. (1970). Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research, 5, 329350.CrossRefGoogle ScholarPubMed