Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T20:50:16.777Z Has data issue: false hasContentIssue false

Latent Change Classes in Dichotomous Data

Published online by Cambridge University Press:  01 January 2025

Anton K. Formann*
Affiliation:
University of Vienna
Ivo Ponocny
Affiliation:
University of Vienna
*
Requests for reprints should be sent to Anton K. Formann, Institut für Psychologie, Universität Wien, Liebiggasse 5, A-1010 Wien, AUSTRIA. E-Mail: anton.formann@univie.ac.at

Abstract

Changes in dichotomous data caused by treatments can be analyzed by means of the so-called linear logistic model with relaxed assumptions (LLRA). The LLRA does not require observable criteria representing a single underlying latent trait, but it postulates the generalizability of the treatment effects over criteria and subjects. To test this latter crucial assumption, the mixture LLRA was proposed that allows directly unobservable types of subjects to have different treatment effects. As the earlier methods for estimating the parameters of the mixture LLRA have specific drawbacks, a further method based on the conditional maximum likelihood principle will be presented here. In contrast to the earlier conditional methods, it uses all of the dichotomous change data while having fewer parameters. Further, its goodness-of-fit tests become more sensitive to a falsely specified number of change-types even though the treatment effects are biased. For typically occurring small to moderate sample sizes, however, parametric bootstrapping of the distributions of the fit statistics is recommended for performing hypotheses tests. Finally, three applications of the new method to empirical data are described: first, about the effect of the so-called Trager psychophysical integration, second, about the effect of autogenic therapy on patients with psychosomatic symptoms, and, third, about the effect of religious education on the attitude towards sects.

Type
Articles
Copyright
Copyright © 2002 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The mixture LLRA is implemented in the menu-driven program MIXLLRA which can be obtained from Ivo Ponocny via e-mail (ivo.ponocny@univie.ac.at).

References

Blischke, W.R. (1962). Moment estimators for the parameters of a mixture of two binomial distributions. Annals of Mathematical Statistics, 33, 444454.CrossRefGoogle Scholar
Bras, J. (2000). Evaluation von Religionsunterricht [Evaluation of religious education]. Austria: University of Vienna (In German)Google Scholar
Churchhouse, R.F. (1981). Handbook of applicable mathematics, Vol. III. Chichester, NY: John Wiley & Sons.Google Scholar
Collins, L.M., Fidler, P.L., Wugalter, S.E., & Long, L.D. (1993). Goodness-of-fit testing for latent class models. Multivariate Behavioral Research, 28, 375389.CrossRefGoogle ScholarPubMed
Cox, D.R., & Snell, E.J. (1989). Analysis of binary data. London, U.K.: Chapman and Hall.Google Scholar
Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39, 138.CrossRefGoogle Scholar
Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).CrossRefGoogle Scholar
Fischer, G.H. (1972). A measurement model for the effect of mass-media. Acta Psychologica, 36, 207220.CrossRefGoogle Scholar
Fischer, G.H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 326.CrossRefGoogle Scholar
Fischer, G.H. (1987). Applying the principles of specific objectivity and of generalizability to the measurement of change. Psychometrika, 52, 565587.CrossRefGoogle Scholar
Fischer, G.H. (1989). An IRT-based model for dichotomous longitudinal data. Psychometrika, 54, 599624.CrossRefGoogle Scholar
Fischer, G.H. (1995). Linear logistic models for change. In Fischer, G.H., & Molenaar, I.W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 157180). New York, NY: Springer-Verlag.Google Scholar
Fischer, G.H., & Parzer, P. (1991). An extension of the rating scale model with an application to the measurement of treatment effects. Psychometrika, 56, 637651.CrossRefGoogle Scholar
Fischer, G.H., & Ponocny, I. (1994). An extension of the partial credit model with an application to the measurement of change. Psychometrika, 59, 177192.CrossRefGoogle Scholar
Fischer, G.H., & Ponocny-Seliger, E. (1998). Structural Rasch modeling. Handbook of the usage of LpcM-Win 1.0. Groningen, Netherlands: ProGAMMA.Google Scholar
Formann, A.K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87, 476486.CrossRefGoogle Scholar
Formann, A.K. (1994). Measuring change in latent subgroups using dichotomous data: Unconditional, conditional, and semiparametric maximum likelihood estimation. Journal of the American Statistical Association, 89, 10271034.CrossRefGoogle Scholar
Formann, A.K. (1997). Small-sample comparison of the exact and asymptotic upper tail probabilities of chi-squared goodness-of-fit statistics: The binomial and the mixture binomial. Journal of Statistical Computation and Simulation, 56(3), 229249.CrossRefGoogle Scholar
Furch, R. (2000). Über die Effizienz der Trager Körperarbeit und Bewegungsschulung [On the efficiency of the Trager psychophysical integration]. Austria: University of Vienna (In German)Google Scholar
Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215231.CrossRefGoogle Scholar
Langeheine, R., Pannekoek, J., & van de Pol, F. (1996). Bootstrapping goodness-of-fit measures in categorical data analysis. Sociological Methods & Research, 24, 492516.CrossRefGoogle Scholar
Lazarsfeld, P.F. (1950). The logical and mathematical foundation of latent structure analysis. In Stouffer, S.A., Guttman, L., Suchman, E.A., Lazarsfeld, P.F., Star, S.A., & Clausen, J.A. (Eds.), Studies in social psychology in World War II. Vol. IV: Measurement and prediction (pp. 362412). Princeton, NJ: Princeton University Press.Google Scholar
Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston, MA: Houghton Mifflin.Google Scholar
Lenk, P.J., & DeSarbo, W. (2000). Bayesian inference for finite mixtures of generalized linear models with random effects. Psychometrika, 64, 93119.CrossRefGoogle Scholar
McHugh, R.B. (1956). Efficient estimation and local identification in latent class analysis. Psychometrika, 21, 331347.CrossRefGoogle Scholar
Meiser, T. (1996). Loglinear Rasch models for the analysis of stability and change. Psychometrika, 61, 629645.CrossRefGoogle Scholar
Meiser, T., Stern, E., & Langeheine, R. (1988). Latent change in discrete data: Unidimensional, multidimensional, and mixture distribution Rasch models for the analyses of repeated observations. Methods of Psychological Research Online, 3(2), 7593.Google Scholar
Neyman, J., & Scott, E.L. (1948). Consistent estimates based on partially consistent observations. Econometrika, 16, 132.CrossRefGoogle Scholar
Noreen, E.W. (1989). Computer intensive methods for testing hypotheses: An introduction. New York, NY: John Wiley & Sons.Google Scholar
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 3, 271282.CrossRefGoogle Scholar
Rost, J. (1996). Testtheorie, Testkonstruktion. Berne, Switzerland: Huber (In German)Google Scholar
Self, S., & Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605610.CrossRefGoogle Scholar
Shunfenthal Watrous, I., & March, S. (1992). The Trager approach: An effective tool for physical therapy. Physical Therapy Forum, 11(9), 2222.Google Scholar
Teicher, H. (1963). Identifiability of finite mixtures. Annals of Mathematical Statistics, 34, 12651269.CrossRefGoogle Scholar
Titterington, D.M., Smith, A.F.M., & Makov, U.E. (1985). Statistical analysis of finite mixture distributions. Chichester, NY: John Wiley & Sons.Google Scholar
van de Pol, F., Langeheine, R., & de Jong, W. (1991). PANMARK V2.2 Panel analysis using Markov chains. Voorberg/Heerlen: Netherlands Central Bureau of Statistics.Google Scholar
Vermunt, J. (1997). eEM: A general program for the analysis of categorical data. Tilburg, Netherlands: Tilburg University.Google Scholar
Vermunt, J.K., & Magidson, J. (2000). Latent GOLD 2.0. User's guide. Belmont, MA: Statistical Innovations.Google Scholar
von Davier, M. (1997). Bootstrapping goodness-of-fit statistics for sparse categorical data—Results from a Monte Carlo study. Methods of Psychological Research Online, 2(2). Retrieved May 3, 2002, from http://www.mpr-online.de/Google Scholar
von Zerssen, D. (1976). Die Beschwerden-Liste. Weinheim, Germany: Beltz (In German)Google Scholar
Wedel, M., & DeSarbo, W. (1994). A review of recent developments in latent structure regression models. In Bagozzi, R. (Eds.), Advanced methods of marketing research (pp. 352388). London, U.K.: Blackwell Publishing.Google Scholar
Widowitz, E. (1987). Der Effekt autogenen Trainings bei funktionellen Erkrankungen [The effect of autogenous training on the functional syndrome.], Austria: University of Vienna.Google Scholar