Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T04:00:01.979Z Has data issue: false hasContentIssue false

Identifiability and Equivalence of GLLIRM Models

Published online by Cambridge University Press:  01 January 2025

Javier Revuelta*
Affiliation:
Autonoma University of Madrid
*
Requests for reprints should be sent to Javier Revuelta, Department of Social Psychology and Methodology, Autonoma University of Madrid, 28049 Madrid, Spain. E-mail: javier.revuelta@uam.es

Abstract

The generalized logit–linear item response model (GLLIRM) is a linearly constrained nominal categories model (NCM) that computes the scale and intercept parameters for categories as a weighted sum of basic parameters. This paper addresses the problems of the identifiability of the basic parameters and the equivalence between different GLLIRM models. It is shown that the identifiability of the basic parameters depends on the size and rank of the coefficient matrix of the linear functions. Moreover, two models are observationally equivalent if the product of the respective coefficient matrices has full column rank. Finally, the paper also explores the relations between the parameters of nested models.

Type
Original Paper
Copyright
Copyright © 2008 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I would like to express my gratitude to the editor and three anonymous reviewers for their helpful suggestions on earlier versions of the paper. This work was supported by the Comunidad de Madrid (Spain) grant: CCG07-UAM/ESP-1615.

References

Andersen, E. B. (1980). Discrete statistical models with social science applications, Amsterdam: North-Holland.Google Scholar
Bartels, R. (1985). Identification in econometrics. The American Statistician, 39, 102104.CrossRefGoogle Scholar
Bechger, T. M., Maris, G. (2004). Structural equation modelling of multiple facet data. Extending models for multitrait–multimethod data. Psicológica, 25, 253274.Google Scholar
Bechger, T. M., Verhelst, N. D., Verstralen, H. F. M. (2001). Identifiability of nonlinear logistic test models. Psychometrika, 66, 357371.CrossRefGoogle Scholar
Bechger, T. M., Verstralen, H. F. M., Verhelst, N. D. (2002). Equivalent linear logistic test models. Psychometrika, 67, 123136.CrossRefGoogle Scholar
Bejar, I. I. (1993). A generative approach to educational and psychological measurement. In Frederiksen, N., Mislevy, R. J., Bejar, I. I. (Eds.), Test theory for a new generation of tests (pp. 199217). Mahwah: Lawrence Erlbaum.Google Scholar
Bejar, I. I., Lawless, R. R., Morley, M. E., Wagner, M. E., Bennett, R. E., Revuelta, J. (2002). A feasibility study of on-the-fly adaptive testing. Journal of Technology, Learning and Assessment, 2, 429.Google Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, F. M., Novick, M. R. (Eds.), Statistical theories of mental tests scores, Reading: Addison-Wesley.Google Scholar
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 2951.CrossRefGoogle Scholar
Bock, R. D. (1997). The nominal categories model. In van der Linden, W. J., Hambleton, R. K. (Eds.), Handbook of modern item response theory, New York: Springer.Google Scholar
Bock, R. D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Bock, R. D., Moustaki, I. (2007). Item response theory in a general framework. In Rao, C. R., Sinharay, S. (Eds.), Handbook of statistics. Psychometrics, Amsterdam: Elsevier.Google Scholar
Embretson, S. (1999). Generating items during testing. Psychometric issues and models. Psychometrika, 64, 407433.CrossRefGoogle Scholar
Fischer, G. H. (1981). On the existence and uniqueness of maximum-likelihood estimates in the Rasch model. Psychometrika, 46, 5977.CrossRefGoogle Scholar
Fischer, G. H. (1983). Logistic latent trait model with linear constraints. Psychometrika, 48, 326.CrossRefGoogle Scholar
Fischer, G. H. (1995). The linear logistic test model. In Fischer, G. H., Molenaar, I. W. (Eds.), Rasch models: foundations, recent developments and applications, New York: Springer.CrossRefGoogle Scholar
Fischer, G. H. (1997). Unidimensional linear logistic Rasch models. In v. der Linden, W., Hambleton, R. K. (Eds.), Handbook of modern item response theory, New York: Springer.Google Scholar
Fischer, G. H. (2004). Remarks on “Equivalent linear logistic test models” by Bechger, Verstralen, and Verhelst (2002). Psychometrika, 69, 305315.CrossRefGoogle Scholar
Fischer, G. H., Molenaar, I. W. (1995). Rasch models. Foundations, recent developments and applications, New York: Springer.Google Scholar
Fischer, G. H., Ponocny, I. (1994). An extension of the partial credit model with an application to the measurement of change. Psychometrika, 56, 177192.CrossRefGoogle Scholar
Hsiao, C. (1983). Identification. In Griliches, Z., Intriligator, M. D. (Eds.), Handbook of econometrics, Amsterdam: North-Holland.Google Scholar
Irvine, S. H., Kyllonen, P. C. (2002). Item generation for test development, Mahwah: Lawrence Erlbaum Associates.Google Scholar
Lehmann, E. L. (1983). Theory of point estimation, New York: Wiley.CrossRefGoogle Scholar
Manski, C. F. (1988). Identification of binary response models. Journal of the American Statistical Association, 83, 729738.CrossRefGoogle Scholar
Maris, G., Bechger, T. M. (2004). Equivalent MIRID models. Psychometrika, 69, 627639.CrossRefGoogle Scholar
Pringle, R. M., Rayner, A. A. (1971). Generalized inverse matrix with application to statistics, London: Charles Griffin & Co.Google Scholar
Rao, C. R. (1973). Linear statistical inference and its applications, New York: Wiley.CrossRefGoogle Scholar
Rao, C. R., Mitra, S. K. (1971). Generalized inverse of matrices and its applications, New York: Wiley.Google Scholar
Rao, C. R., Toutenburg, H. (1995). Linear models. Least squares and alternatives, New York: Springer.Google Scholar
Revuelta, J. (2008). The generalized logit-linear item response model for binary-designed items. Psychometrika, 73(3), 385405.CrossRefGoogle Scholar
Richmond, J. (1974). Identifiability in linear models. Econometrica, 42, 731736.CrossRefGoogle Scholar
Rothenberg, T. (1971). Identification in parametric models. Econometrica, 39, 577591.CrossRefGoogle Scholar
Thissen, D., Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567577.CrossRefGoogle Scholar
Tsai, R. C. (2000). Remarks on the identifiability of Thurstonian ranking models. Case V, III or neither?. Psychometrika, 65, 233240.CrossRefGoogle Scholar
Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. The Annals of Mathematical Statistics, 20, 595601.CrossRefGoogle Scholar
Wansbeek, T., Meijer, E. (2000). Measurement error and latent variables in econometrics, Amsterdam: North-Holland.Google Scholar