Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T06:24:08.688Z Has data issue: false hasContentIssue false

A Hierarchical Ornstein–Uhlenbeck Model for Continuous Repeated Measurement Data

Published online by Cambridge University Press:  01 January 2025

Zita Oravecz*
Affiliation:
University of Leuven
Francis Tuerlinckx
Affiliation:
University of Leuven
Joachim Vandekerckhove
Affiliation:
University of Leuven
*
Requests for reprints should be sent to Zita Oravecz, Department of Psychology, University of Leuven, Tiensestraat 102, 3000 Leuven, Belgium. E-mail: zita.oravecz@psy.kuleuven.be

Abstract

In this paper, we present a diffusion model for the analysis of continuous-time change in multivariate longitudinal data. The central idea is to model the data from a single person with an Ornstein–Uhlenbeck diffusion process. We extend it hierarchically by allowing the parameters of the diffusion process to vary randomly over different persons. With this approach, both intra and interindividual differences are analyzed simultaneously. Furthermore, the individual difference parameters can be regressed on covariates, thereby providing an explanation of between-person differences. Unstructured and unbalanced data pose no problem for the model to be applied. We demonstrate the method on data from an experience sampling study to investigate changes in the core affect. It can be concluded that different factors from the five factor model of personality are related to features of the trajectories in the core affect space, such as the cross-correlation and variability of the changes.

Type
Original Paper
Copyright
Copyright © 2009 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, L. (1974). Stochastic differential equations: Theory and applications, New York: WileyGoogle Scholar
Barnard, J., McCulloch, R.E., Meng, X.L. (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10, 12811311Google Scholar
Blackwell, P.G. (1997). Random diffusion models for animal movements. Ecological Modelling, 100, 87102CrossRefGoogle Scholar
Blackwell, P.G. (2003). Bayesian inference for Markov processes with diffusion and discrete components. Biometrika, 90, 613627CrossRefGoogle Scholar
Bolger, N., Davis, A., Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54, 579616CrossRefGoogle ScholarPubMed
Bollen, K.A. (1989). Structural equations with latent variables, New Jersey: WileyCrossRefGoogle Scholar
Borkenau, P., Ostendorf, F. (1998). The big five as states: How useful is the five-factor model to describe intraindividual variations over time?. Journal of Research in Personality, 32, 202221CrossRefGoogle Scholar
Brillinger, D.R., Preisler, H.K., Ager, A.A., Kie, J.G. (2004). An exploratory data analysis (EDA) of the paths of moving animals. Journal of Statistical Planning and Inference, 122, 4363CrossRefGoogle Scholar
Brockwell, P.J., Davis, R.A. (2002). Introduction to time series and forecasting, New York: SpringerCrossRefGoogle Scholar
Cox, D.R., Miller, H.D. (1972). The theory of stochastic processes, London: Chapman & HallGoogle Scholar
Csikszentmihalyi, M., Larson, R. (1987). Validity and reliability of the experience sampling method. The Journal of Nervous and Mental Disease, 175, 526536CrossRefGoogle ScholarPubMed
Daniels, M., Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika, 89, 553566CrossRefGoogle Scholar
De Boeck, P., Wilson, M. (2004). Explanatory item response models: A generalized linear and nonlinear approach, New York: SpringerCrossRefGoogle Scholar
De la Cruz-Mesía, R., Marshall, G. (2006). Non-linear random effects models with continuous time autoregressive errors: a Bayesian approach. Statistics in Medicine, 25, 14711784CrossRefGoogle ScholarPubMed
Delsing, M.J.M.H., Oud, J.H.L., Bruyn, E.E.J. (2005). Assessment of bidirectional influences between family relationships and adolescent problem behavior: Discrete vs. continuous time analysis. European Journal of Psychological Assessment, 21, 226231CrossRefGoogle Scholar
Diggle, P.J., Heagerty, P., Liang, K.Y., Zeger, S.L. (2002). Analysis of longitudinal data, (2nd ed.). Oxford: Oxford University PressCrossRefGoogle Scholar
Dunn, J.E., Gipson, P.S. (1977). Analysis of radio telemetry data in studies of home range. Biometrics, 33, 85101CrossRefGoogle Scholar
Ferrer, E., Nesselroade, J.R. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion, 3, 344360CrossRefGoogle ScholarPubMed
Gelman, A., Goegebeur, Y., Tuerlinckx, F., Van Mechelen, I. (2000). Diagnostic checks for discrete-data regression models using posterior predicitive simulations. Journal of the Royal Statistical Society Series C—Applied Statistics, 49, 247268CrossRefGoogle Scholar
Gelman, A., Carlin, J., Stern, H., Rubin, D. (2004). Bayesian data analysis, New York: Chapman & HallGoogle Scholar
Goldstein, H. (2003). Multilevel statistical models, London: ArnoldGoogle Scholar
Hoekstra, H.A., Ormel, J., & De Fruyt, F. (1996). NEO PI-R, NEO FFI Big five persoonlijkheidsvragenlijsten: Handleiding [NEO PI-R, NEO FFI Big five personality questionnaire: Manual]. Lisse, The Netherlands: Swets & Zeitlinger B.V.Google Scholar
Karlin, S., Taylor, H. (1981). A second course in stochastic processes, New York: Academic PressGoogle Scholar
Kuppens, P., Van Mechelen, I., Nezlek, J.B., Dossche, D., Timmermans, T. (2007). Individual differences in core affect variability and their relationship to personality and adjustment. Emotion, 7, 262274CrossRefGoogle ScholarPubMed
Larsen, R.J. (2000). Toward a science of mood regulation. Psychological Inquiry, 11, 129141CrossRefGoogle Scholar
Larson, R., Csikszentmihalyi, M. (1983). The experience sampling method. New Directions for Methodology of Social and Behavioral Science, 15, 4156Google Scholar
Li, S.C., Huxhold, O., Schmiedek, F. (2004). Aging and attenuated processing robustness: Evidence from cognitive and sensorimotor functioning. Gerontology, 50, 2834CrossRefGoogle ScholarPubMed
Little, R.J., Rubin, D.B. (2002). Statistical analysis with missing data, New York: WileyCrossRefGoogle Scholar
Lykken, D.T., Tellegen, A. (1996). Happiness is a stochastic phenomenon. Psychological Science, 7, 186189CrossRefGoogle Scholar
Mood, A.M., Graybill, F.A., Boes, D.C. (1974). Introduction to the theory of statistics, New York: McGraw-HillGoogle Scholar
Oud, J.H.L. (2002). Continuous time modeling of the crossed-lagged panel design. Kwantitatieve Methoden, 69, 126Google Scholar
Oud, J.H.L. (2007). Comparison of four procedures to estimate the damped linear differential oscillator for panel data. In van Montfort, K., Oud, J., Satorra, A. (Eds.), Longitudinal models in the behavioral and related sciences (pp. 1940). Mahwah: Lawrence Erlbaum AssociatesGoogle Scholar
Oud, J.H.L., Singer, H. (2008). Continuous time modeling of panel data: Sem versus filter techniques. Statistica Neerlandica, 62, 428CrossRefGoogle Scholar
Raudenbush, S.W., Bryk, A.S. (2002). Hierarchical linear models: Applications and data analysis methods, Newbury Park: SageGoogle Scholar
Robert, C.P., Casella, G. (2004). Monte Carlo statistical methods, New York: SpringerCrossRefGoogle Scholar
Russell, J.A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110, 145172CrossRefGoogle ScholarPubMed
Russell, J.A., Feldman-Barrett, L. (1999). Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 76, 805819CrossRefGoogle ScholarPubMed
Russell, J.A., Weiss, A., Mendelssohn, G.A. (1989). Affect grid: A single-item scale of pleasure and arousal. Journal of Personality and Social Psychology, 57, 493502CrossRefGoogle Scholar
Schach, S. (1971). Weak convergence results for a class of multivariate Markov processes. The Annals of Mathematical Statistics, 42, 451465CrossRefGoogle Scholar
Singer, H. (2008). Nonlinear continuous time modeling approaches in panel research. Statistica Neerlandica, 62, 2957CrossRefGoogle Scholar
Smith, P.L. (2000). Stochastic, dynamic models of response times and accuracy: A foundational primer. Journal of Mathematical Psychology, 44, 408463CrossRefGoogle Scholar
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 6, 583640CrossRefGoogle Scholar
Sy, J.P., Taylor, J.M.G., Cumberland, W.G. (1997). A stochastic model for the analysis of bivariate longitudinal AIDS data. Biometrics, 53, 542555CrossRefGoogle ScholarPubMed
Taylor, J.M.G., Cumberland, W.G., Sy, J.P. (1994). A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association, 89, 727736CrossRefGoogle Scholar
van Montfort, K., Oud, J., Satorra, A. (2007). Longitudinal models in the behavioral and related sciences, Mahwah: Lawrence Erlbaum AssociatesGoogle Scholar
Verbeke, G., Molenberghs, G. (2000). Linear mixed models for longitudinal data, New York: SpringerGoogle Scholar
Walls, T.A., Schafer, J.L. (2006). Models for intensive longitudinal data, New York: Oxford University PressCrossRefGoogle Scholar
Zellner, A. (1971). An introduction to Bayesian inference in econometrics, New York: WileyGoogle Scholar