Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T10:48:31.818Z Has data issue: false hasContentIssue false

The Geometry of Enhancement in Multiple Regression

Published online by Cambridge University Press:  01 January 2025

Niels G. Waller*
Affiliation:
University of Minnesota
*
Requests for reprints should be sent to Niels G. Waller, Department of Psychology, University of Minnesota, N657 Elliott Hall, Minneapolis, MN, 55455, USA. E-mail: nwaller@umn.edu

Abstract

In linear multiple regression, “enhancement” is said to occur when R2=br>rr, where b is a p×1 vector of standardized regression coefficients and r is a p×1 vector of correlations between a criterion y and a set of standardized regressors, x. When p=1 then br and enhancement cannot occur. When p=2, for all full-rank RxxI, Rxx=E[xx′]=VΛV′ (where VΛV′ denotes the eigen decomposition of Rxx; λ1>λ2), the set \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\boldsymbol{B}_{1}:=\{\boldsymbol{b}_{i}:R^{2}=\boldsymbol{b}_{i}'\boldsymbol{r}_{i}=\boldsymbol{r}_{i}'\boldsymbol{r}_{i};0 \ltR^{2}\le1\}$\end{document} contains four vectors; the set \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\boldsymbol{B}_{2}:=\{\boldsymbol{b}_{i}: R^{2}=\boldsymbol{b}_{i}'\boldsymbol{r}_{i}\gt\boldsymbol{r}_{i}'\boldsymbol{r}_{i}$\end{document}; \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$0\lt R^{2}\le1;R^{2}\lambda_{p}\leq\boldsymbol{r}_{i}'\boldsymbol{r}_{i}\lt R^{2}\}$\end{document} contains an infinite number of vectors. When p≥3 (and λ1>λ2>⋯>λp), both sets contain an uncountably infinite number of vectors. Geometrical arguments demonstrate that B1 occurs at the intersection of two hyper-ellipsoids in ℝp. Equations are provided for populating the sets B1 and B2 and for demonstrating that maximum enhancement occurs when b is collinear with the eigenvector that is associated with λp (the smallest eigenvalue of the predictor correlation matrix). These equations are used to illustrate the logic and the underlying geometry of enhancement in population, multiple-regression models. R code for simulating population regression models that exhibit enhancement of any degree and any number of predictors is included in Appendices A and B.

Type
Original Paper
Copyright
Copyright © 2011 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertrand, P.V. (1998). Constructing explained and explanatory variables with strange statistical analysis results. The Statistician, 47, 377383.CrossRefGoogle Scholar
Bertrand, P.V., Holder, R.L. (1988). A quirk in multiple-regression: the whole regression can be greater than the sum of its parts. The Statistician, 37(4), 371374.CrossRefGoogle Scholar
Briel, J.B., O’Neill, K., Scheunernan, J.D. (1993). GRE technical manual, Princeton: Educational Testing Service.Google Scholar
Bryant, P. (1982). Geometry, statistics, probability: variations on a common theme. The American Statistician, 38(1), 3848.CrossRefGoogle Scholar
Conger, A.J. (1974). A revised definition for suppressor variables: a guide to their identification and interpretation. Educational and Psychological Measurement, 34(1), 3546.CrossRefGoogle Scholar
Cox, D.R. (1968). Notes on some aspects of regression analysis. Journal of the Royal Statistical Society, Series A, 131, 265279.CrossRefGoogle Scholar
Crocker, L., Algina, J. (1986). Introduction to classical and modern test theory, New York: Holt, Rinehart, and Winston.Google Scholar
Cuadras, C.M. (1993). Interpreting an inequality in multiple regression. The American Statistician, 47(4), 256258.CrossRefGoogle Scholar
Currie, I., Korabinski, A. (1984). Some comments on bivariate regression. The Statistician, 33(3), 283292.CrossRefGoogle Scholar
Dayton, C.M. (1972). A method for constructing data which illustrate a suppressor variable. The American Statistician, 26(5), 36.CrossRefGoogle Scholar
Derksen, S., Keselman, H.J. (1992). Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45(2), 265282.CrossRefGoogle Scholar
Dicken, C. (1963). Good impression, social desirability, and acquiescence as suppressor variables. Educational and Psychological Measurement, 23(4), 699720.CrossRefGoogle Scholar
Ferguson, C.C. (1979). Intersections of ellipsoids and planes of arbitrary orientation and position. Mathematical Geology, 11(3), 329333.CrossRefGoogle Scholar
Freund, R.J. (1988). When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R^{2}\gt r_{yx_{1}}^{2}+r_{yx_{2}}^{2}$\end{document} (revisited). The American Statistician, 42(1), 8990.Google Scholar
Friedman, L., Wall, M. (2005). Graphical views of suppression and multicollinearity in multiple linear regression. The American Statistician, 59(2), 127136.CrossRefGoogle Scholar
Graybill, F.A. (1983). Matrices with applications in statistics, (2nd ed.). London: Thomson Learning.Google Scholar
Gromping, U. (2007). Estimators of relative importance in linear regression based on variance decomposition. The American Statistician, 61(2), 139147.CrossRefGoogle Scholar
Hadi, A.S. (1996). Matrix algebra as a tool, Belmont: Duxbury Press.Google Scholar
Hamilton, D. (1987). Sometimes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R^{2}\gt r_{yx_{1}}^{2}+r_{yx_{2}}^{2}$\end{document}: correlated variables are not always redundant. The American Statistician, 41(2), 129132.Google Scholar
Hamilton, D. (1988). Reply. The American Statistician, 42, 9091.Google Scholar
Hawkins, D.M., Fatti, L.P. (1984). Exploring multivariate data using the minor principal components. The Statistician, 33(4), 325338.CrossRefGoogle Scholar
Holling, H. (1983). Suppressor structures in the general linear model. Educational and Psychological Measurement, 43(1), 19.CrossRefGoogle Scholar
Horst, P. (1941). The prediction of personal adjustment (Bulletin No. 48), New York: Social Science Research Council.Google Scholar
Hotelling, H. (1957). The relationship of the newer statistical multivariate statistical methods to factor analysis. British Journal of Statistical Psychology, 10(2), 6979.CrossRefGoogle Scholar
Kendall, M.G., Stuart, A. (1973). The advanced theory of statistics, (3rd ed.). London: Charles Griffin and Company.Google Scholar
Kuncel, N.R., Hezlett, S.A., Ones, D.S. (2001). A comprehensive meta-analysis of the predictive validity of the graduate record examinations: implications for graduate student selection and performance. Psychological Bulletin, 127(1), 162181.CrossRefGoogle Scholar
Lewis, J.W., Escobar, L.A. (1986). Suppression and enhancement in bivariate regression. The Statistician, 35(1), 1726.CrossRefGoogle Scholar
Lipovetsky, S., Conklin, M. (2004). Enhance-synergism and suppression effects in multiple regression. International Journal of Mathematics Education in Science and Technology, 35(3), 391402.CrossRefGoogle Scholar
Magnus, J.R., Neudecker, H. (1999). Matrix differential calculus with applications in statistics and econometrics, New York: Wiley.Google Scholar
Marsaglia, G., Olkin, I. (1984). Generating correlation-matrices. SIAM Journal on Scientific and Statistical Computing, 5(2), 470475.CrossRefGoogle Scholar
Maassen, G.H., Bakker, A.B. (2001). Suppressor variables in path models: definitions and interpretations. Sociological Methods & Research, 30(2), 241270.CrossRefGoogle Scholar
Meehl, P.E. (1945). A simple algebraic development of Horst’s suppressor variables. The American Journal of Psychology, 58(4), 550554.CrossRefGoogle Scholar
Mitra, S. (1988). The relationship between the multiple and the zero-order correlation coefficients. The American Statistician, 42(1), 89.Google Scholar
Nickerson, C. (2008). Mutual suppression: comment on Paulhus et al. (2004). Multivariate Behavioral Research, 43(4), 556563.CrossRefGoogle Scholar
Paulhus, D.L., Robins, R.W., Trzesniewski, K.H., Tracy, J.L. (2004). Two replicable suppressor situations in personality research. Multivariate Behavioral Research, 39(2), 301326.CrossRefGoogle ScholarPubMed
R Development Core Team (2011). R: A language and environment for statistical computing, Vienna: R Foundation for Statistical Computing http://www.R-project.org/.Google Scholar
Rao, C., Mitra, S. (1971). Generalized inverse of the matrix and its applications, New York: Wiley.Google Scholar
Routledge, R.D. (1990). When stepwise regression fails: correlated variables some of which are redundant. International Journal of Mathematical Education in Science and Technology, 21(3), 403410.CrossRefGoogle Scholar
Saville, D.J., Wood, G.R. (1986). A method for teaching statistics using N-dimensional geometry. The American Statistician, 40, 205214.Google Scholar
Schey, H.M. (1993). The relationship between the magnitude of SSR(x2) and SSR(x2|x1): a geometric description. The American Statistician, 47(1), 2630.Google Scholar
Schmidt, F., Hunter, J.E. (1996). Measurement error in psychological research: lessons from 26 research scenarios. Psychological Methods, 1(2), 199223.CrossRefGoogle Scholar
Sharpe, N., Roberts, R. (1997). The relationship among sums of squares, correlation coefficients, and suppression. The American Statistician, 51(1), 4648.CrossRefGoogle Scholar
Shieh, G. (2001). The inequality between the coefficient of determination and the sum of squared simple correlation coefficients. The American Statistician, 55(2), 121124.CrossRefGoogle Scholar
Taleb, N.N. (2007). The black swan: the impact of the highly improbable, New York: Random House.Google Scholar
Tzelgov, J., Henik, A. (1985). A definition of suppression situations for the general linear model: a regression weights approach. Educational and Psychological Measurement, 45(2), 281284.CrossRefGoogle Scholar
Tzelgov, J., Henik, A. (1991). Suppression situations in psychological research: definitions, implications, and applications. Psychological Bulletin, 109(3), 524536.CrossRefGoogle Scholar
Waller, N., Jones, J. (2010). Correlation weights in multiple regression. Psychometrika, 75(1), 5869.CrossRefGoogle Scholar
Wickens, T. (1995). The geometry of multivariate statistics, Mahwah: Lawrence Erlbaum Associates.Google Scholar
Wiggins, J.S. (1973). Personality and prediction: principles of personality assessment, New York: Addison-Wesley.Google Scholar