Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T20:25:44.778Z Has data issue: false hasContentIssue false

Generalized Processing Tree Models: Jointly Modeling Discrete and Continuous Variables

Published online by Cambridge University Press:  01 January 2025

Daniel W. Heck*
Affiliation:
University of Mannheim
Edgar Erdfelder
Affiliation:
University of Mannheim
Pascal J. Kieslich
Affiliation:
University of Mannheim
*
Correspondence should be made to Daniel W. Heck, Department of Psychology, University of Mannheim, L 13, 17, Mannheim 68161, Germany. Email: heck@uni-mannheim.de

Abstract

Multinomial processing tree models assume that discrete cognitive states determine observed response frequencies. Generalized processing tree (GPT) models extend this conceptual framework to continuous variables such as response times, process-tracing measures, or neurophysiological variables. GPT models assume finite-mixture distributions, with weights determined by a processing tree structure, and continuous components modeled by parameterized distributions such as Gaussians with separate or shared parameters across states. We discuss identifiability, parameter estimation, model testing, a modeling syntax, and the improved precision of GPT estimates. Finally, a GPT version of the feature comparison model of semantic categorization is applied to computer-mouse trajectories.

Type
Original Paper
Copyright
Copyright © 2018 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by the research training group Statistical Modeling in Psychology (GRK 2277), funded by the German Research Foundation (DFG), and the University of Mannheim’s Graduate School of Economic and Social Sciences (GSC 26), also funded by the DFG. All data and R scripts for the simulations and the empirical analysis are available in the supplementary material at https://osf.io/fyeum.

References

Batchelder, W. H.(1998).Multinomial processing tree models and psychological assessment.Psychological Assessment,10,331344.Google Scholar
Batchelder, W. H., &Alexander, G. E.(2013).Discrete-state models: Comment on Pazzaglia, Dube, and Rotello (2013).Psychological Bulletin,139 12041212.CrossRefGoogle ScholarPubMed
Batchelder, W. H., &Riefer, D. M.(1990).Multinomial processing models of source monitoring.Psychological Review,97,548564.CrossRefGoogle Scholar
Batchelder, W. H., &Riefer, D. M.(1999).Theoretical and empirical review of multinomial process tree modeling.Psychonomic Bulletin & Review,6,5786.CrossRefGoogle ScholarPubMed
Behboodian, J.(1972).Information matrix for a mixture of two normal distributions.Journal of Statistical Computation and Simulation,1,295314.CrossRefGoogle Scholar
Bröder, A., Kellen, D.,Schütz, J., &Rohrmeier, C.(2013).Validating a two-high-threshold measurement model for confidence rating data in recognition.Memory,21,916944.CrossRefGoogle ScholarPubMed
Bröder, A., &Schütz, J.(2009).Recognition ROCs are curvilinear—or are they? On premature arguments against the two-high-threshold model of recognition.Journal of Experimental Psychology: Learning, Memory, and Cognition,35,587606.Google ScholarPubMed
Casella, G., &Berger, R. L.(2002).Statistical inference,Pacific Grove, CA:Duxbury.Google Scholar
Chernoff, H., &Lehmann, E. L.(1954).The use of maximum likelihood estimates in chi-square tests for goodness of fit.The Annals of Mathematical Statistics,25,579586.CrossRefGoogle Scholar
Coolin, A.,Erdfelder, E.,Bernstein, D. M.,Thornton, A. E., &Thornton, W. L.(2015).Explaining individual differences in cognitive processes underlying hindsight bias.Psychonomic Bulletin & Review,22,328348.CrossRefGoogle ScholarPubMed
Dale, R.,Kehoe, C., &Spivey, M. J.(2007).Graded motor responses in the time course of categorizing atypical exemplars.Memory & Cognition,35,1528.CrossRefGoogle ScholarPubMed
Dempster, A. P.,Laird, N. M., &Rubin, D. B.(1977).Maximum likelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society. Series B (Methodological),39,138.CrossRefGoogle Scholar
Donkin, C., Nosofsky, R. M., Gold, J. M., &Shiffrin, R. M.(2013).Discrete-slots models of visual working-memory response times.Psychological Review,120,873902.CrossRefGoogle ScholarPubMed
Dube, C.,Starns, J. J.,Rotello, C. M., &Ratcliff, R.(2012).Beyond ROC curvature: Strength effects and response time data support continuous-evidence models of recognition memory.Journal of Memory and Language,67,389406.CrossRefGoogle ScholarPubMed
Dzhaparidze, K., &Nikulin, M.(1974).On a modification of the standard statistics of Pearson.Theory of Probability & Its Applications,19,851853.CrossRefGoogle Scholar
Efron, B., &Tibshirani, R. J.(1997).An introduction to the bootstrap,New York, NY:Chapman & Hall.Google Scholar
Erdfelder, E.,Auer, T-S,Hilbig, B. E.,Assfalg, A.,Moshagen, M., &Nadarevic, L.(2009).Multinomial processing tree models: A review of the literature.Zeitschrift für Psychologie/Journal of Psychology,217,108124.CrossRefGoogle Scholar
Forstmann, B. U., &Wagenmakers, E-J(2015).An introduction to model-based cognitive neuroscience,New York, NY:Springer.CrossRefGoogle Scholar
Freeman, J. B., &Ambady, N.(2010).MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method.Behavior Research Methods,42,226241.CrossRefGoogle ScholarPubMed
Freeman, J. B., &Dale, R.(2013).Assessing bimodality to detect the presence of a dual cognitive process.Behavior Research Methods,45,8397.CrossRefGoogle ScholarPubMed
Frühwirth-Schnatter, S.(2006).Finite mixture and markov switching models,New York, NY:Springer.Google Scholar
Heck, D. W.,Arnold, N. R., &Arnold, D.(2018).TreeBUGS: An R package for hierarchical multinomial-processing-tree modeling.Behavior Research Methods,50,264284.CrossRefGoogle Scholar
Heck, D. W., &Erdfelder, E.(2016).Extending multinomial processing tree models to measure the relative speed of cognitive processes.Psychonomic Bulletin & Review,23,14401465.10.3758/s13423-016-1025-6CrossRefGoogle ScholarPubMed
Heck, D. W., &Erdfelder, E.(2017).Linking process and measurement models of recognition-based decisions.Psychological Review,124,442471.CrossRefGoogle ScholarPubMed
Hu, X.(1999).Multinomial processing tree models: An implementation.Behavior Research Methods, Instruments, & Computers,31,689695.CrossRefGoogle ScholarPubMed
Hu, X., &Batchelder, W. H.(1994).The statistical analysis of general processing tree models with the EM algorithm.Psychometrika,59,2147.CrossRefGoogle Scholar
Kieslich, P. J., &Henninger, F.(2017).Mousetrap: An integrated, open-source mouse-tracking package.Behavior Research Methods,49,16521667.Google ScholarPubMed
Kieslich, P. J., Wulff, D. U., Henninger, F., &Haslbeck, J. M. B.,Schulte-Mecklenbeck, M.(2016). Mousetrap: An R package for processing and analyzing mouse-tracking data. https://doi.org/10.5281/zenodo.596640.CrossRefGoogle Scholar
Klauer, K. C.,Smelser, N. J., &Baltes, P. B.(2001).Theory of model testing and selection.International Encyclopedia of the Social & Behavioral Sciences,Oxford:Pergamon.99279931.CrossRefGoogle Scholar
Klauer, K. C.(2010).Hierarchical multinomial processing tree models: A latent-trait approach.Psychometrika,75,7098.CrossRefGoogle Scholar
Koop, G. J., &Criss, A. H.(2016).The response dynamics of recognition memory: Sensitivity and bias.Journal of Experimental Psychology: Learning, Memory, and Cognition,42,671685.Google ScholarPubMed
Luce, R. D.,(1986).Response times: Their role in inferring elementary mental organization,New York, NY:Oxford University Press.Google Scholar
Mathôt, S.,Schreij, D., &Theeuwes, J.(2012).OpenSesame: An open-source, graphical experiment builder for the social sciences.Behavior Research Methods,44,314324.CrossRefGoogle ScholarPubMed
Matzke, D.,Dolan, C. V.,Batchelder, W. H., &Wagenmakers, E.-J.(2015).Bayesian estimation of multinomial processing tree models with heterogeneity in participants and items.Psychometrika,80,205235.CrossRefGoogle ScholarPubMed
Michalkiewicz, M., &Erdfelder, E.(2016).Individual differences in use of the recognition heuristic are stable across time, choice objects, domains, and presentation formats.Memory & Cognition,44,454468.CrossRefGoogle ScholarPubMed
Miller, J.(2006).A likelihood ratio test for mixture effects.Behavior Research Methods,38,92106.CrossRefGoogle ScholarPubMed
Moore, D. S., &Spruill, M. C.(1975).Unified large-sample theory of general chi-squared statistics for tests of fit.The Annals of Statistics,3,599616.CrossRefGoogle Scholar
Moshagen, M.(2010).multiTree: A computer program for the analysis of multinomial processing tree models.Behavior Research Methods,42,4254.CrossRefGoogle ScholarPubMed
Myung, I. J.,Pitt, M. A.,Kim, W.,Lamberts, K., &Goldstone, R.(2005).Model evaluation, testing and selection.Handbook of cognition,Thousand Oaks, CA:Sage.422436.CrossRefGoogle Scholar
Nikulin, M.(1973).Chi-square test for continuous distributions with shift and scale parameters.Theory of Probability & Its Applications,18,559568.CrossRefGoogle Scholar
Ollman, R.(1966).Fast guesses in choice reaction time.Psychonomic Science,6,155156.CrossRefGoogle Scholar
Province, J. M., &Rouder, J. N.(2012).Evidence for discrete-state processing in recognition memory.Proceedings of the National Academy of Sciences,109,1435714362.CrossRefGoogle ScholarPubMed
Ranger, J.,Kuhn, J-T, &Gaviria, J-L(2015).A race model for responses and response times in tests.Psychometrika,80,791810.CrossRefGoogle ScholarPubMed
Rao, K. C., &Robson, B. S.(1974).A chi-square statistic for goodness-of-fit tests within the exponential family.Communications in Statistics,3,11391153.CrossRefGoogle Scholar
Read, T. RC., &Cressie, N. AC.(1988).Goodness-of-fit statistics for discrete multivariate data,New York, NY:Springer.CrossRefGoogle Scholar
Rouder, J. N., &Morey, R. D.(2009).The nature of psychological thresholds.Psychological Review,116,655660.CrossRefGoogle ScholarPubMed
Rouder, J. N.,Province, J. M.,Morey, R. D.,Gomez, P., &Heathcote, A.(2015).The lognormal race: A cognitive-process model of choice and latency with desirable psychometric properties.Psychometrika,80,491513.CrossRefGoogle Scholar
Singmann, H., &Kellen, D.(2013).MPTinR: Analysis of multinomial processing tree models in R.Behavior Research Methods,45,560575.CrossRefGoogle ScholarPubMed
Sloman, S. A.(1996).The empirical case for two systems of reasoning.Psychological Bulletin,119,322.CrossRefGoogle Scholar
Smith, E. E.,Shoben, E. J., &Rips, L. J.(1974).Structure and process in semantic memory: A featural model for semantic decisions.Psychological Review,81,214241.CrossRefGoogle Scholar
Snodgrass, J. G., &Corwin, J.(1988).Pragmatics of measuring recognition memory: Applications to dementia and amnesia.Journal of Experimental Psychology: General,117,3450.CrossRefGoogle ScholarPubMed
Swagman, A. R.,Province, J. M., &Rouder, J. N.(2015).Performance on perceptual word identification is mediated by discrete states.Psychonomic Bulletin & Review,22,265273.CrossRefGoogle ScholarPubMed
Teicher, H.(1967).Identifiability of mixtures of product measures.The Annals of Mathematical Statistics,38,13001302.CrossRefGoogle Scholar
Tuerlinckx, F., &Boeck, P. D.(2005).Two interpretations of the discrimination parameter.Psychometrika,70,629650.CrossRefGoogle Scholar
van der Maas, H. LJ.,Molenaar, D.,Maris, G.,Kievit, R. A., &Borsboom, D.(2011).Cognitive psychology meets psychometric theory: On the relation between process models for decision making and latent variable models for individual differences.Psychological Review,118,339356.CrossRefGoogle ScholarPubMed
Van Zandt, T.(2000).How to fit a response time distribution.Psychonomic Bulletin & Review,7,424465.CrossRefGoogle Scholar
Voinov, V.,Nikulin, M. S., &Balakrishnan, N.(2013).Chi-squared goodness of fit tests with applications,Waltham, MA:Academic Press.Google Scholar
Wagenmakers, E-J, &Farrell, S.(2004).AIC model selection using Akaike weights.Psychonomic Bulletin & Review,11,192196.CrossRefGoogle ScholarPubMed
Yakowitz, S. J., &Spragins, J. D.(1968).On the identifiability of finite mixtures.The Annals of Mathematical Statistics,39,209214.CrossRefGoogle Scholar
Yantis, S.,Meyer, D. E., &Smith, J. K.(1991).Analyses of multinomial mixture distributions: New tests for stochastic models of cognition and action.Psychological Bulletin,110,350374.CrossRefGoogle ScholarPubMed
Supplementary material: File

Electronic supplementary material

The online version of this article (https://doi.org/10.1007/s11336-018-9622-0) contains supplementary material, which is available to authorized users.
Download Electronic supplementary material(File)
File 188.9 KB