Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:09:12.125Z Has data issue: false hasContentIssue false

Generalized Constrained Multiple Correspondence Analysis

Published online by Cambridge University Press:  01 January 2025

Heungsun Hwang*
Affiliation:
McGill University
Yoshio Takane
Affiliation:
McGill University
*
Requests for reprints should be addressed to: Heungsun Hwang, Claes Fornell International Group, 625 Avis Drive, Ann Arbor, MI 48108. E-Mail: hhwang@mail.cfigroup.com

Abstract

A comprehensive approach for imposing both row and column constraints on multivariate discrete data is proposed that may be called generalized constrained multiple correspondence analysis (GCMCA). In this method each set of discrete data is first decomposed into several submatrices according to its row and column constraints, and then multiple correspondence analysis (MCA) is applied to the decomposed submatrices to explore relationships among them. This method subsumes existing constrained and unconstrained MCA methods as special cases and also generalizes various kinds of linearly constrained correspondence analysis methods. An example is given to illustrate the proposed method.

Type
Articles
Copyright
Copyright © 2002 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Heungsun Hwang is now at Claes Fornell International Group. The work reported in this paper was supported by Grant A6394 from the Natural Sciences and Engineering Research Council of Canada to the second author.

References

Adam, G., Bon, F., Capdevielle, J., & Mouriaux, R. (1970). L'ouvrier français en 1970 [The French workman in 1970], Paris: FNSP.Google Scholar
Benzécri, J.P. (1973). L'Analyse des données. Vol. 2. L'Analyse des correspondances. Paris: Dunod.Google Scholar
Benzécri, J.P. (1979). Sur le calcul des taux d'inertia dans l'analyse d'un questionaire. Addendum et erratum à. Cahiers de L'analyse des Données, 4, 377378.Google Scholar
Böckenholt, U., & Böckenholt, I. (1990). Canonical analysis of contingency tables with linear constraints. Psychometrika, 55, 633639.CrossRefGoogle Scholar
Böckenholt, U., & Takane, Y. (1994). Linear constraints in correspondence analysis. In Greenacre, M.J., Blasius, J. (Eds.), Correspondence analysis in social sciences (pp. 112127). London: Academic Press.Google Scholar
Daudin, J.J. (1980). Partial association measures and an application to qualitative regression. Biometrika, 67, 581590.CrossRefGoogle Scholar
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 126.CrossRefGoogle Scholar
Gifi, A. (1990). Nonlinear multivariate analysis. Chichester, U.K.: Wiley.Google Scholar
Greenacre, M.J. (1984). Theory and applications of correspondence analysis. London: Academic Press.Google Scholar
Lebart, L., Morineau, A., & Warwick, K.M. (1984). Multivariate descriptive statistical analysis. New York, NY: Wiley.Google Scholar
Le Roux, B., & Rouanet, H. (1998). Interpreting axes in multiple correspondence analysis: Method of the contributions of points and deviations. In Greenacre, M.J., & Blasius, J. (Eds.), Visualization of categorical data (pp. 197220). Chestnut Hill, MA: Academic Press.CrossRefGoogle Scholar
Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its applications. Toronto, Canada: University of Toronto Press.CrossRefGoogle Scholar
Nishisato, S. (1984). Forced classification: A simple application of a quantitative technique. Psychometrika, 49, 2536.CrossRefGoogle Scholar
Nishisato, S. (1994). Elements of dual scaling: An introduction to practical data analysis. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Ramsay, J.O. (1978). Confidence regions for multidimensional scaling analysis. Psychometrika, 43, 145160.CrossRefGoogle Scholar
Seber, G.A.F. (1984). Multivariate observations. New York, NY: Wiley.CrossRefGoogle Scholar
Takane, Y., & Hwang, H. (2000). Generalized constrained canonical correlation analysis. Manuscript submitted for publication.Google Scholar
Takane, Y., Kiers, H., & de Leeuw, J. (1995). Component analysis with different sets of constraints on different dimensions. Psychometrika, 60, 259280.CrossRefGoogle Scholar
Takane, Y., & Shibayama, T. (1991). Principal component analysis with external information on both subjects and variables. Psychometrika, 56, 97120.CrossRefGoogle Scholar
Takane, Y., Yanai, H., & Mayekawa, S. (1991). Relationships among several methods of linearly constrained correspondence analysis. Psychometrika, 56, 667684.CrossRefGoogle Scholar
ter Braak, C.J.F. (1986). Canonical correspondence analysis: A new eigenvalue technique for multivariate direct gradient analysis. Ecology, 67, 11671179.CrossRefGoogle Scholar
Timm, N., & Carlson, J. (1976). Part and bipartial canonical correlation analysis. Psychometrika, 41, 159176.CrossRefGoogle Scholar
van Buuren, S., & de Leeuw, J. (1992). Equality constraints in multiple correspondence analysis. Multivariate Behavioral Research, 27, 567583.CrossRefGoogle ScholarPubMed
Yanai, H. (1986). Some generalizations of correspondence analysis in terms of projection operators. In Diday, E., Escoufier, Y., Lebart, L., Pagès, J. P., Schektman, Y., & Thomassone, R. (Eds.), Data analysis and informatics IV (pp. 193207). Amsterdam: North Holland.Google Scholar
Yanai, H. (1998). Generalized canonical correlation analysis with linear constraints. In Hayashi, C., Ohsumi, N., Yajima, K., Tanaka, Y., Bock, H.-H., & Baba, Y. (Eds.), Data science, classification, and related methods (pp. 539546). Tokyo: Springer-Verlag.CrossRefGoogle Scholar
Yanai, H., & Maeda, T. (2000). Partial multiple correspondence analysis. Proceedings of the International Conference on Measurement and Multivariate Analysis, 28, 110113.Google Scholar