Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T10:29:08.508Z Has data issue: false hasContentIssue false

Functional Multiple-Set Canonical Correlation Analysis

Published online by Cambridge University Press:  01 January 2025

Heungsun Hwang*
Affiliation:
McGill University
Kwanghee Jung
Affiliation:
McGill University
Yoshio Takane
Affiliation:
McGill University
Todd S. Woodward
Affiliation:
University of British Columbia and British Columbia Mental Health and Addiction Research Institute
*
Requests for reprints should be sent to Heungsun Hwang, Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada. E-mail: heungsun.hwang@mcgill.ca

Abstract

We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the method solves a matrix eigen-analysis problem through the adoption of a basis expansion approach to approximating data and weight functions. We apply the proposed method to functional magnetic resonance imaging (fMRI) data to identify networks of neural activity that are commonly activated across subjects while carrying out a working memory task.

Type
Original Paper
Copyright
Copyright © 2011 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almansa, J., Delicado, P. (2009). Analysing musical performance through functional data analysis: rhythmic structure in Schumann’s Traumerei. Connection Science, 21, 207225.CrossRefGoogle Scholar
Cairo, T.A., Woodward, T.S., Ngan, E.T.C. (2006). Decreased encoding efficiency in schizophrenia. Biological Psychiatry, 59(8), 740746.CrossRefGoogle ScholarPubMed
Carroll, J.D. (1968). A generalization of canonical correlation analysis to three or more sets of variables. Proceedings of the 76th Annual Convention of the American Psychological Association, 3, 227228.Google Scholar
Correa, N.M., Li, Y., Adali, T., Calhoun, V.D. (2009). Fusion of fMRI, sMRI, and EEG data using canonical correlation analysis. Proceedings of IEEE international conference on acoustics, speech, and signal processing (pp. 385388). Washington: IEEE.Google Scholar
Correa, N.M., Eichele, T., Adali, T., Li, Y., Calhoun, V.D. (2010). Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI. Neuroimage, 50, 14381445.CrossRefGoogle ScholarPubMed
Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102, 96739678.CrossRefGoogle ScholarPubMed
Gifi, A. (1990). Nonlinear multivariate analysis, Chichester: Wilye.Google Scholar
Goutte, C., Nielsen, F.A., Hansen, L.K. (2000). Modeling the hemodynamic response in fMRI using smooth FIR filters. IEEE Transactions on Medical Imaging, 19, 11881201.CrossRefGoogle ScholarPubMed
Hastie, T., Tibshirani, R., Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction, (2nd ed.). New York: Springer.CrossRefGoogle Scholar
Hoerl, A.E., Kennard, R.W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12, 5567.CrossRefGoogle Scholar
Horst, P. (1961). Generalized canonical correlations and their applications to experimental data. Journal of Clinical Psychology, 17, 331347.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Hunter, M.A., Takane, Y. (2002). Constrained principal component analysis: various applications. Journal of Educational and Behavioral Statistics, 27, 105145.CrossRefGoogle Scholar
Hwang, H., Takane, Y. (2002). Generalized constrained multiple correspondence analysis. Psychometrika, 67, 211224.CrossRefGoogle Scholar
Jackson, I., Sirois, S. (2009). Infant cognition: going full factorial with pupil dilation. Developmental Science, 12, 670679.CrossRefGoogle ScholarPubMed
Lee, S., Bresch, E., Narayanan, S. (2006). An exploratory study of emotional speech production using functional data analysis techniques. In Yehia, H.C., Demolin, D., Laboissiere, R. (Eds.), Proceedings of the 7th international seminar on speech production (pp. 525532). Ubatuba: CEFALA.Google Scholar
Leurgans, S.E., Moyeed, R.A., Silverman, B.W. (1993). Canonical correlation analysis when data are curves. Journal of the Royal Statistical Society B, 55, 725740.CrossRefGoogle Scholar
Mattar, A.A.G., Ostry, D.J. (2010). Generalization of dynamics learning across changes in movement amplitude. The Journal of Neurophysiology, 104, 426438.CrossRefGoogle ScholarPubMed
Meredith, W. (1964). Rotation to achieve factorial invariance. Psychometrika, 29, 187206.CrossRefGoogle Scholar
Metzak, P.D., Feredoes, E., Takane, Y., Wang, L., Weinstein, S., Cairo, T., Ngan, E.T.C., Woodward, T.S. (2010). Constrained principal component analysis reveals functionally connected load-dependent networks involved in multiple stages of working memory. Human Brain Mapping, 32, 856871.CrossRefGoogle ScholarPubMed
Metzak, P.D., Riley, J., Wang, L., Whitman, J.C., Ngan, E.T.C., Woodward, T.S. (2011). Decreased efficiency of task-positive and task-negative networks during working memory in schizophrenia. Schizophrenia Bulletin., Advance online publication.Google ScholarPubMed
Olshen, R.A., Biden, E.N., Wyatt, M.P., Sutherland, D.H. (1989). Gait analysis and the bootstrap. Annals of Statistics, 17, 14191440.CrossRefGoogle Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (1999). Numerical recipes in C. The art of scientific computing, (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
Ramsay, J.O., Silverman, B.W. (2005). Functional data analysis, (2nd ed.). New York: Springer.CrossRefGoogle Scholar
Ramsay, J.O., Hooker, G., Graves, S. (2009). Functional data analysis with R and Matlab, New York: Springer.CrossRefGoogle Scholar
Rice, J.A., Silverman, B.W. (1991). Estimating the mean and covariance structure non-parametrically when the data are curves. The Journal of the Royal Statistical Society B, 53, 233243.CrossRefGoogle Scholar
Takane, Y., Hunter, M.A. (2001). Constrained principal component analysis: a comprehensive theory. Applicable Algebra in Engineering, Communication, and Computing, 12, 391419.CrossRefGoogle Scholar
Takane, Y., Hwang, H. (2002). Generalized constrained canonical correlation analysis. Multivariate Behavioral Research, 37, 163195.CrossRefGoogle Scholar
Takane, Y., Oshima-Takane, Y. (2002). Nonlinear generalized canonical correlation analysis by neural network models. In Nishisato, S., Baba, Y., Bozdogan, H., Kanefuji, K. (Eds.), Measurement and multivariate analysis (pp. 183190). Tokyo: Springer.CrossRefGoogle Scholar
Takane, Y., Shibayama, T. (1991). Principal component analysis with external information on both subjects and variables. Psychometrika, 56, 97120.CrossRefGoogle Scholar
Takane, Y., Hwang, H., Abdi, H. (2008). Regularized multiple-set canonical correlation analysis. Psychometrika, 73, 753775.CrossRefGoogle Scholar
Tian, T.S. (2010). Functional data analysis in brain imaging studies. Frontiers in Quantitative Psychology and Measurement, 1, 111.Google ScholarPubMed
Vines, B.W., Nuzzo, R.L., Levitin, D.J. (2005). Quantifying and analyzing musical dynamics: differential calculus, physics and functional data techniques. Music Perception, 23(2), 137152.CrossRefGoogle Scholar
Vines, B.W., Krumhansl, C.L., Wanderley, M.M., Levitin, D.J. (2006). Cross-modal interactions in the perception of musical performance. Cognition, 101, 80113.CrossRefGoogle ScholarPubMed
Vinod, H.D. (1976). Canonical ridge and econometrics of joint production. Journal of Econometrics, 4, 47166.CrossRefGoogle Scholar
Wedel, M., Kamakura, W.A. (1998). Market segmentation: conceptual and methodological foundations, Boston: Kluwer Academic.Google Scholar
Yanai, H. (1998). Generalized canonical correlation analysis with linear constraints. In Hayashi, C., Ohsumi, N., Yajima, K., Tanaka, Y., Bock, H.-H., Baba, Y. (Eds.), Data science, classification, and related methods (pp. 539546). Tokyo: Springer.CrossRefGoogle Scholar