Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:47:59.379Z Has data issue: false hasContentIssue false

Factor Copula Models for Item Response Data

Published online by Cambridge University Press:  01 January 2025

Aristidis K. Nikoloulopoulos*
Affiliation:
University of East Anglia
Harry Joe
Affiliation:
University of British Columbia
*
Requests for reprints should be sent to Aristidis K. Nikoloulopoulos, School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK. E-mail: A.Nikoloulopoulos@uea.ac.uk

Abstract

Factor or conditional independence models based on copulas are proposed for multivariate discrete data such as item responses. The factor copula models have interpretations of latent maxima/minima (in comparison with latent means) and can lead to more probability in the joint upper or lower tail compared with factor models based on the discretized multivariate normal distribution (or multidimensional normal ogive model). Details on maximum likelihood estimation of parameters for the factor copula model are given, as well as analysis of the behavior of the log-likelihood. Our general methodology is illustrated with several item response data sets, and it is shown that there is a substantial improvement on existing models both conceptually and in fit to data.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44, 182198.Google Scholar
Bartholomew, D., Knott, M., & Moustaki, I. (2011). Latent variable models and factor analysis: a unified approach (3rd ed.). New York: Wiley.CrossRefGoogle Scholar
Braeken, J., Tuerlinckx, F., & De Boeck, P. (2007). Copula functions for residual dependency. Psychometrika, 72, 393411.CrossRefGoogle Scholar
Braeken, J. (2011). A boundary mixture approach to violations of conditional independence. Psychometrika, 76, 5776.CrossRefGoogle Scholar
Brechmann, E.C., Czado, C., & Aas, K. (2012). Truncated regular vines in high dimensions with applications to financial data. Canadian Journal of Statistics, 40, 6885.CrossRefGoogle Scholar
Chang, E., D’Zurilla, T., & Maydeu-Olivares, A. (1994). Assessing the dimensionality of optimism and pessimism using a multimeasure approach. Cognitive Therapy and Research, 18, 143160.CrossRefGoogle Scholar
de Menezes, L.M. (1999). On fitting latent class models for binary data: the estimation of standard errors. British Journal of Mathematical and Statistical Psychology, 52, 149168.CrossRefGoogle Scholar
Genest, C., & MacKay, J. (1986). The joy of copulas: bivariate distributions with uniform marginals. The American Statistician, 40, 280283.CrossRefGoogle Scholar
Gibbons, R., & Hedeker, D. (1992). Full-information item bi-factor analysis. Psychometrika, 57, 423436.CrossRefGoogle Scholar
Hull, J., & White, A. (2004). Valuation of a CDO and an nth to default CDS without Monte Carlo simulation. Journal of Derivatives, 12, 823.CrossRefGoogle Scholar
Hult, H., & Lindskog, F. (2002). Multivariate extremes, aggregation and dependence in elliptical distributions. Advances in Applied Probability, 34, 587608.CrossRefGoogle Scholar
Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall.Google Scholar
Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis, 94, 401419.CrossRefGoogle Scholar
Jöreskog, K.G., & Moustaki, I. (2001). Factor analysis of ordinal variables: a comparison of three approaches. Multivariate Behavioral Research, 36, 347387.CrossRefGoogle ScholarPubMed
Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.CrossRefGoogle Scholar
Krupskii, P., & Joe, H. (2013). Factor copula models for multivariate data. Journal of Multivariate Analysis, 120, 85101.CrossRefGoogle Scholar
Kurowicka, D., & Joe, H. (2011). Dependence modeling: vine copula handbook. Singapore: World Scientific.Google Scholar
Lehmann, E.L. (1998). Elements of large sample theory. New York: Springer.Google Scholar
Maydeu-Olivares, A. (2006). Limited information estimation and testing of discretised multivariate normal structural models. Psychometrika, 71, 5777.CrossRefGoogle Scholar
Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71, 713732.CrossRefGoogle Scholar
McDonald, R.P. (1997). Normal ogive multidimensional model. In van der Linden, W.J., & Hambleton, R.K. (Eds.), Handbook of modern item response theory (pp. 257269). New York: Springer.CrossRefGoogle Scholar
McNeil, A.J., Frey, R., & Embrechts, P. (2005). Quantitative risk management: concepts, techniques and tools. Princeton: Princeton University Press.Google Scholar
Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551560.CrossRefGoogle Scholar
Olsson, F. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44, 443460.CrossRefGoogle Scholar
Panagiotelis, A., Czado, C., & Joe, H. (2012). Pair copula constructions for multivariate discrete data. Journal of the American Statistical Association, 107, 10631072.CrossRefGoogle Scholar
Rizopoulos, D. (2011). ltm: latent trait models under IRT (R package version 0.9-7).Google Scholar
Samejima, F. (1969). Calibration of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 17.Google Scholar
Scheier, M., & Carver, C. (1985). Optimism, coping, and health: assessment and implications of generalized outcome expectancies. Cognitive Therapy and Research, 4, 219247.Google ScholarPubMed
Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de L’Institut de Statistique de L’Université de Paris, 8, 229231.Google Scholar
Stroud, A.H., & Secrest, D. (1966). Gaussian quadrature formulas. Englewood Cliffs: Prentice-Hall.Google Scholar