Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:52:16.183Z Has data issue: false hasContentIssue false

Erratum to: Linking Item Response Model Parameters

Published online by Cambridge University Press:  01 January 2025

Wim J. van der Linden*
Affiliation:
Pacific Metrics Corporation
Michelle D. Barrett
Affiliation:
Pacific Metrics Corporation
*
Correspondence should be made to Wim J. van der Linden, Pacific Metrics Corporation, 1 Lower Ragsdale Bldg. 1 Ste 150, Monterey, CA 93940, USA. Email: wjvdlinden@outlook.com
Rights & Permissions [Opens in a new window]

Abstract

Type
Erratum
Copyright
Copyright © 2017 The Psychometric Society

Erratum to: Psychometrika (2016) 81(3):650–673 DOI 10.1007/s11336-015-9469-6

The following argument should have been added to the proof of Theorem 3 to show that the linking function ξ = φ ( ξ ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\xi }^{{*}}= \varphi (\varvec{\xi })$$\end{document} has to be separable in the components of ξ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\xi }$$\end{document} : as the linking problem is symmetric in ξ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\xi }^{{*}}$$\end{document} and ξ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\xi }$$\end{document} , φ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} has to be bijective (i.e., has an inverse that returns the same unique ξ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\xi }$$\end{document} from which the linking departs). In addition, to allow for the fact that the two calibrations may yield the same value for some of the parameters, φ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} should always be able to return ξ j = ξ j , j = 1 , , d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _{j}^{{*}}=\xi _{j}, j=1,\ldots ,d$$\end{document} , for all values of ξ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\xi }$$\end{document} . The separable form of φ ( ξ ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (\varvec{\xi })$$\end{document} in (31) does have both properties: each of its component functions is monotone and thus has an inverse, while the identity function is a special case of a monotone function. Now, if φ ( ξ ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (\varvec{\xi })$$\end{document} would not be separable in its components, it would hold that ξ j = φ j ( ξ 1 , , ξ d } ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _{j}^{{*}}=\varphi _{j}(\xi _{1},\ldots ,\xi _{d}\})$$\end{document} for some j = 1 , , d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,\ldots ,d$$\end{document} . However, ξ j = φ j ( ξ 1 , , ξ d ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _{j}^{{*}}=\varphi _{j}(\xi _{1},\ldots ,\xi _{d})$$\end{document} is only able to always return φ j \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _{j}$$\end{document} ( ξ 1 , , ξ j , , ξ d ) = ξ j \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _{1},\ldots ,\xi _{j},\ldots ,\xi _{d})=\xi _{j}$$\end{document} when it is independent of ( ξ 1 , , ξ j - 1 , ξ j + 1 , , ξ d ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _{1},\ldots ,\xi _{j-1},\xi _{j+1},\ldots ,\xi _{d})$$\end{document} , that is, does not vary as a function of any of the other parameters. It follows that ξ = φ ( ξ ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\xi }^{{*}}=\varphi (\varvec{\xi })$$\end{document} has to be separable in its components.

Footnotes

The online version of the original article can be found under doi:10.1007/s11336-015-9469-6.