Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T23:06:16.911Z Has data issue: false hasContentIssue false

Ensuring Positiveness of the Scaled Difference Chi-square Test Statistic

Published online by Cambridge University Press:  01 January 2025

Albert Satorra*
Affiliation:
Universitat Pompeu Fabra
Peter M. Bentler
Affiliation:
University of California
*
Requests for reprints should be sent to Albert Satorra, Department of Economics and Business, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, Barcelona, Spain. E-mail: albert.satorra@upf.edu

Abstract

A scaled difference test statistic \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\tilde{T}{}_{d}$\end{document} that can be computed from standard software of structural equation models (SEM) by hand calculations was proposed in Satorra and Bentler (Psychometrika 66:507–514, 2001). The statistic \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\tilde{T}_{d}$\end{document} is asymptotically equivalent to the scaled difference test statistic \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\bar{T}_{d}$\end{document} introduced in Satorra (Innovations in Multivariate Statistical Analysis: A Festschrift for Heinz Neudecker, pp. 233–247, 2000), which requires more involved computations beyond standard output of SEM software. The test statistic \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\tilde{T}_{d}$\end{document} has been widely used in practice, but in some applications it is negative due to negativity of its associated scaling correction. Using the implicit function theorem, this note develops an improved scaling correction leading to a new scaled difference statistic \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\bar{T}_{d}$\end{document} that avoids negative chi-square values.

Type
Theory and Methods
Copyright
Copyright © 2010 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported by grants SEJ2006-13537 and PR2007-0221 from the Spanish Ministry of Science and Technology and by USPHS grants DA00017 and DA01070.

References

Bentler, P.M. (2008). EQS 6 structural equations program manual, Encino: Multivariate Software.Google Scholar
Bentler, P.M., Satorra, A., & Yuan, K.-H. (2009). Smoking and cancers: case-robust analysis of a classic data set. Structural Equation Modeling, 16, 382390.CrossRefGoogle ScholarPubMed
Bollen, K.A., & Curran, P.J. (2006). Latent curve models: a structural equation perspective, New York: Wiley.Google Scholar
Bonett, D.G., Woodward, J.A., & Randall, R.L. (2002). Estimating p-values for Mardia’s coefficients of multivariate skewness and kurtosis. Computational Statistics, 17, 117122.CrossRefGoogle Scholar
Browne, M.W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283.CrossRefGoogle ScholarPubMed
Grace, J.B. (2006). Structural equation modeling and natural systems, New York: Cambridge University Press.CrossRefGoogle Scholar
Satorra, A. (1989). Alternative test criteria in covariance structure analysis: a unified approach. Psychometrika, 54, 131151.CrossRefGoogle Scholar
Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In Heijmans, D.D.H., Pollock, D.S.G., Satorra, A. (Eds.), Innovations in multivariate statistical analysis: a festschrift for Heinz Neudecker (pp. 233247). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Satorra, A., & Bentler, P.M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In von Eye, A., & Clogg, C.C. (Eds.), Latent variables analysis: applications for developmental research (pp. 399419). Thousand Oaks: Sage.Google Scholar
Satorra, A., & Bentler, P.M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507514.CrossRefGoogle Scholar
Satorra, A., & Bentler, P.M. (2008). Ensuring positiveness of the scaled difference chi-square test statistic. Department of Statistics, UCLA Department of Statistics Preprint. http://repositories.cdlib.org/uclastat/papers/2008010905.Google Scholar
Yuan, K.-H., & Bentler, P.M. (2007). Structural equation modeling. In Rao, C.R., & Sinharay, S. (Eds.), Handbook of statistics 26: Psychometrics (pp. 297358). Amsterdam: North-Holland.Google Scholar