Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T22:36:02.288Z Has data issue: false hasContentIssue false

Detecting Changes in Correlation Networks with Application to Functional Connectivity of FMRI Data

Published online by Cambridge University Press:  01 January 2025

Changryong Baek*
Affiliation:
Sungkyunkwan University
Benjamin Leinwand
Affiliation:
Stevens institute of technology
Kristen A. Lindquist
Affiliation:
University of North Carolina at Chapel Hill
Seok-Oh Jeong
Affiliation:
Hankuk University of Foreign Studies
Joseph Hopfinger
Affiliation:
University of North Carolina at Chapel Hill
Katheleen M. Gates
Affiliation:
University of North Carolina at Chapel Hill
Vladas Pipiras
Affiliation:
University of North Carolina at Chapel Hill
*
Correspondence should be made to Changryong Baek, Sungkyunkwan University, 25-2 Sungkyunkwan-ro, Jongrogu,Seoul 03063, South Korea. Email: crbaek@skku.edu

Abstract

Research questions in the human sciences often seek to answer if and when a process changes across time. In functional MRI studies, for instance, researchers may seek to assess the onset of a shift in brain state. For daily diary studies, the researcher may seek to identify when a person’s psychological process shifts following treatment. The timing and presence of such a change may be meaningful in terms of understanding state changes. Currently, dynamic processes are typically quantified as static networks where edges indicate temporal relations among nodes, which may be variables reflecting emotions, behaviors, or brain activity. Here we describe three methods for detecting changes in such correlation networks from a data-driven perspective. Networks here are quantified using the lag-0 pair-wise correlation (or covariance) estimates as the representation of the dynamic relations among variables. We present three methods for change point detection: dynamic connectivity regression, max-type method, and a PCA-based method. The change point detection methods each include different ways to test if two given correlation network patterns from different segments in time are significantly different. These tests can also be used outside of the change point detection approaches to test any two given blocks of data. We compare the three methods for change point detection as well as the complementary significance testing approaches on simulated and empirical functional connectivity fMRI data examples.

Type
Theory & Methods
Copyright
Copyright © 2023 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11336-023-09908-7.

The work of Baek was supported in part by the National Research Foundation of Korea (NRF-2019R1F1A1057104, NRF-2022R1F1A1066209). The work of Hopfinger and Gates and data acquisition was supported by the National Institutes of Health - National Institute of Biomedical Imaging and Bioengineering (R01 EB021299). Pipiras’s research was partially supported by the Grant DMS 1712966.

References

Arizmendi, C.,Gates, K.,Fredrickson, B., &Wright, A.(2021).Specifying exogeneity and bilinear effects in data-driven model searches.Behavior Research Methods,53(3),12761288.CrossRefGoogle ScholarPubMed
Baek, C.,Gates, K. M.,Leinwand, B., &Pipiras, V.(2021).Two sample tests for high-dimensional autocovariances.Computational Statistics and Data Analysis,153CrossRefGoogle Scholar
Bai, J.(2000).Vector autoregressive models with structural changes in regression coefficients and in variance-covariance matrices.Annals of Economics and Finance,1(2),303339.Google Scholar
Bannister, P.,Flitney, D.,Woolrich, M., &Smith, S.(2000).Lowpass temporal filtering in fMRI time series.NeuroImage,11(5),S658CrossRefGoogle Scholar
Bassett, D. S.,Wymbs, N. F.,Porter, M. A.,Mucha, P. J.,Carlson, J. M., &Grafton, S. T.(2011).Dynamic reconfiguration of human brain networks during learning.Proceedings of the National Academy of Sciences,108(18),7641CrossRefGoogle ScholarPubMed
Cai, T.,Liu, W., &Xia, Y.(2013).Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings.Journal of the American Statistical Association,108(501),265277.CrossRefGoogle Scholar
Cohen, J. R., &D’Esposito, M.(2016).The segregation and integration of distinct brain networks and their relationship to cognition.Journal of Neuroscience,36(48),1208312094.CrossRefGoogle ScholarPubMed
Cribben, I.,Haraldsdottir, R.,Atlas, L. Y.,Wager, T. D., &Lindquist, M. A.(2012).Dynamic connectivity regression: Determining state-related changes in brain connectivity.Neuroimage,61(4),907920.CrossRefGoogle ScholarPubMed
Denny, B. T.,Fan, J.,Liu, X.,Guerreri, S.,Mayson, S. J.,Rimsky, L.,New, A. S.,Siever, L. J., &Koenigsberg, H. W.(2013).Insula-amygdala functional connectivity is correlated with habituation to repeated negative images.Social Cognitive and Affective Neuroscience,9(11),16601667.CrossRefGoogle ScholarPubMed
Eichinger, B., &Kirch, C.(2018).A MOSUM procedure for the estimation of multiple random change points.Bernoulli,24(1),526564.CrossRefGoogle Scholar
Elton, A., &Gao, W.(2015).Task-related modulation of functional connectivity variability and its behavioral correlations.Human Brain Mapping,36(8),32603272.CrossRefGoogle ScholarPubMed
Friston, K. J.(2011).Functional and effective connectivity: A review.Brain Connectivity,1(1),1336.CrossRefGoogle ScholarPubMed
Gonzalez-Castillo, J.,Hoy, C. W.,Handwerker, D. A.,Robinson, M. E.,Buchanan, L. C.,Saad, Z. S., &Bandettini, P. A.(2015).Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns.Proceedings of the National Academy of Sciences,112(28),87628767.CrossRefGoogle ScholarPubMed
Hallquist, M. N.,Hwang, K., &Luna, B.(2013).The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity.Neuroimage,82,208225.CrossRefGoogle Scholar
Han, X., &Inoue, A.(2015).Tests for parameter instability in dynamic factor models.Econometric Theory,31(5),11171152.CrossRefGoogle Scholar
Huang, B., Zhang, K., Sanchez-Romero, R., Ramsey, J., Glymour, M. & Glymour, C. (2019). Diagnosis of autism spectrum disorder by causal influence strength learned from resting-state fMRI data. arXiv preprint arXiv:1902.10073 .Google Scholar
Hutchison, R. M.,Womelsdorf, T.,Allen, E. A.,Bandettini, P. A.,Calhoun, V. D.,Corbetta, M.,Della Penna, S.,Duyn, J. H.,Glover, G. H.,Gonzalez-Castillo, J.etal(2013).Dynamic functional connectivity: Promise, issues, and interpretations.Neuroimage,80,360378.CrossRefGoogle ScholarPubMed
Jeong, S.-O.,Pae, C.,Park, H.-J.(2016).Connectivity-based change point detection for large-size functional networks.NeuroImage,143,353363.CrossRefGoogle ScholarPubMed
Kim, J.,Jeong, W., &Chung, C. K.(2021).Dynamic functional connectivity change-point detection with random matrix theory inference.Frontiers in Neuroscience,15,445CrossRefGoogle ScholarPubMed
Kucyi, A.,Tambini, A.,Sadaghiani, S.,Keilholz, S., &Cohen, J. R.(2018).Spontaneous cognitive processes and the behavioral validation of time-varying brain connectivity.Network Neuroscience,2(4),397417.CrossRefGoogle ScholarPubMed
Lavielle, M., &Teyssiere, G.(2006).Detection of multiple change-points in multivariate time series.Lithuanian Mathematical Journal,46(3),287306.CrossRefGoogle Scholar
Lindquist, M. A.,Xu, Y.,Nebel, M. B., &Caffo, B. S.(2014).Evaluating dynamic bivariate correlations in resting-state fMRI: A comparison study and a new approach.NeuroImage,101,531546.CrossRefGoogle ScholarPubMed
Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44, 314–324.CrossRefGoogle Scholar
Ombao, H.,Lindquist, M.,Aston, J., &Thompson, W.(2016).Handbook of neuroimaging data analysis,Boca Raton:Chapman and Hall/CRC.CrossRefGoogle Scholar
Park, H.-J.,Friston, K. J.,Pae, C.,Park, B., &Razi, A.(2018).Dynamic effective connectivity in resting state fMRI.Neuroimage,180,594608.CrossRefGoogle ScholarPubMed
Pitarakis, J.-Y.(2004).Least squares estimation and tests of breaks in mean and variance under misspecification.The Econometrics Journal,7,3254.CrossRefGoogle Scholar
Power, J. D.,Cohen, A. L.,Nelson, S. M.,Wig, G. S.,Barnes, K. A.,Church, J. A.,Vogel, A. C.,Laumann, T. O.,Miezin, F. M.,Schlaggar, B. L.etal(2011).Functional network organization of the human brain.Neuron,72(4),665678.CrossRefGoogle ScholarPubMed
Tanabe, J.,Miller, D., Tregellas, J.,Freedman, R., &Meyer, F. G.(2002).Comparison of detrending methods for optimal fMRI preprocessing.NeuroImage,15(4),902907.CrossRefGoogle ScholarPubMed
Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., Marcus, D. J., Westerlund, A., Casey, B. J., & Nelson, C. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168(3), 242–249.CrossRefGoogle Scholar
Warnick, R.,Guindani, M.,Erhardt, E.,Allen, E.,Calhoun, V., &Vannucci, M.(2018).A Bayesian approach for estimating dynamic functional network connectivity in fMRI data.Journal of the American Statistical Association,113(521),134151.CrossRefGoogle ScholarPubMed
Waugh, C. E., &Schirillo, J. A.(2012).Timing: A missing key ingredient in typical fMRI studies of emotion.Behavioral and Brain Sciences,35(3),170171.CrossRefGoogle ScholarPubMed
Xu, Y., &Lindquist, M. A.(2015).Dynamic connectivity detection: An algorithm for determining functional connectivity change points in fMRI data.Frontiers in Neuroscience,9,285.CrossRefGoogle ScholarPubMed
Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz’ criterion. Statistics and Probability Letters, 6(3), 181–189.CrossRefGoogle Scholar
Youssofzadeh, V., Akhtar, Z., Amiri, A. M. & Falk, T. H. (2017), An automated framework for emotional fMRI data analysis using covariance matrix. In 2017 IEEE global conference on signal and information processing (GlobalSIP) (pp. 760–763). IEEE.CrossRefGoogle Scholar
Zhang, D., &Wu, W. B.(2017).Gaussian approximation for high dimensional time series.The Annals of Statistics,45(5),18951919.CrossRefGoogle Scholar
Supplementary material: File

Baek supplementary material

Baek supplementary material
Download Baek supplementary material(File)
File 438.5 KB