Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T19:42:40.609Z Has data issue: false hasContentIssue false

Considering Horn’s Parallel Analysis from a Random Matrix Theory Point of View

Published online by Cambridge University Press:  01 January 2025

Edoardo Saccenti*
Affiliation:
Wageningen University
Marieke E. Timmerman
Affiliation:
University of Groningen
*
Correspondence should be made to Edoardo Saccenti, Laboratory of Systems and Synthetic Biology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands. Email: esaccenti@gmail.com

Abstract

Horn’s parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy–Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy–Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy–Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy–Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.

Type
Original Paper
Copyright
Copyright © 2016 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airy, G. (1838). On the intensity of light in the neighbourhood of a caustic. Transactions of the Cambridge Philosophical Society, 6, 379402.Google Scholar
Baik, J., Ben Arous, G., & Péché, S. (2005). Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Annals of Probability, 33, 16431697.CrossRefGoogle Scholar
Baik, J., & Silverstein, J. W. (2006). Eigenvalues of large sample covariance matrices of spiked population models. Journal of Multivariate Analysis, 97, (6), 13821408.CrossRefGoogle Scholar
Bao, Z., Pan, G., & Zhou, W. (2012). Tracy-Widom law for the extreme eigenvalues of sample correlation matrices. Electronic Journal of Probability, 17, (88), 132.CrossRefGoogle Scholar
Barelds, D. P., & Dijkstra, P. (2010). Narcissistic personality inventory: Structure of the adapted Dutch version. Scandinavian Journal of Psychology, 51, (2), 132138.CrossRefGoogle ScholarPubMed
Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Statistical Psychology, 3, (2), 7785.CrossRefGoogle Scholar
Bornemann, F. (2009). On the numerical evaluation of distributions in random matrix theory: A review. arXiv:0904.1581.Google Scholar
Bornemann, F. (2010). On the numerical evaluation of Fredholm determinants. Mathematics of Computation, 79, (270), 871915.CrossRefGoogle Scholar
Buja, A., & Eyübğolu, N. (1992). Remarks on parallel analysis. Multivariate Behavioral Research, 27, (4), 509540.CrossRefGoogle ScholarPubMed
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, (2), 245276.CrossRefGoogle ScholarPubMed
Ceulemans, E., & Kiers, H. A. (2006). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. British Journal of Mathematical and Statistical Psychology, 59, (1), 133150.CrossRefGoogle ScholarPubMed
Chiani, M. (2012). Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy–Widom distribution. arXiv:1209.3394.Google Scholar
Crawford, A. V., Green, S. B., Levy, R., Lo, W.-J., Scott, L., Svetina, D., & Thompson, M. S. (2010). Evaluation of parallel analysis methods for determining the number of factors. Educational and Psychological Measurement, 70, (6), 885901.CrossRefGoogle Scholar
Deming, W. E. (1966). Some theory of sampling, New York: Courier Dover Publications.Google Scholar
DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11, 189212.CrossRefGoogle Scholar
Dinno, A. (2009). Exploring the sensitivity of horn’s parallel analysis to the distributional form of random data. Multivariate Behavioral Research, 44, (3), 362388.CrossRefGoogle Scholar
Efron, B., & Tibshirani, R. J. (1993). The bootstrap estimate of standard error. In An introduction to the bootstrap (pp. 4559). New York: Springer.CrossRefGoogle Scholar
Efron, B. (1994). Missing data, imputation, and the bootstrap. Journal of the American Statistical Association, 89, (426), 463475.CrossRefGoogle Scholar
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, (3), 272CrossRefGoogle Scholar
Ford, J. K., MacCallum, R. C., & Tait, M. (1986). The application of exploratory factor analysis in applied psychology: A critical review and analysis. Personnel Psychology, 39, (2), 291314.CrossRefGoogle Scholar
Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new look at Horn’s parallel analysis with ordinal variables. Psychological Methods, 18, (4), 454CrossRefGoogle Scholar
Glorfeld, L. W. (1995). An improvement on horn’s parallel analysis methodology for selecting the correct number of factors to retain. Educational and Psychological Measurement, 55, (3), 377393.CrossRefGoogle Scholar
Green, S. B., Levy, R., Thompson, M. S., Lu, M., Lo, W.-J. (2012). A proposed solution to the problem with using completely random data to assess the number of factors with parallel analysis. Educational and Psychological Measurement, 72(3) 357–374. http://epm.sagepub.com/content/72/3/357.abstract doi:10.1177/0013164411422252CrossRefGoogle Scholar
Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19, (2), 149161.CrossRefGoogle Scholar
Harding, M. C. (2008). Explaining the single factor bias of arbitrage pricing models in finite samples. Economics Letters, 99, (1), 8588.CrossRefGoogle Scholar
Hastings, S., & McLeod, J. (1980). A boundary value problem associated with the second Painleve transcendent and the Korteweg-de Vries equation. Archive for Rational Mechanics and Analysis, 73, (1), 3151.CrossRefGoogle Scholar
Hattie, J. (1985). Methodology review: assessing unidimensionality of tests and ltenls. Applied Psychological Measurement, 9, (2), 139164.CrossRefGoogle Scholar
Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, (2), 191205.CrossRefGoogle Scholar
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30, (2), 179185.CrossRefGoogle ScholarPubMed
Humphreys, L. G., & Montanelli, R. G. Jr (1975). An investigation of the parallel analysis criterion for determining the number of common factors. Multivariate Behavioral Research, 10, (2), 193205.CrossRefGoogle Scholar
Jackson, D. A. (1993). Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology, 74, (8), 22042214.CrossRefGoogle Scholar
Johnstone, I. M. (2006). High dimensional statistical inference and random matrices. arXiv:math/0611589.Google Scholar
Johnstone, I. M., Ma, Z., Perry, P. O. Shahram, M. (2009). Rmtstat: Distributions, statistics and tests derived from random matrix theory [Computersoftwaremanual]. (R package version 0.2)Google Scholar
Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Annals of Statistics, 29, (2), 295327.CrossRefGoogle Scholar
Jolliffe, I. (2005). Principal component analysis, New York: Wiley.Google Scholar
Karoui, N. E. (2003). On the largest eigenvalue of Wishart matrices with identity covariance when n, p and p/n tend to infinity. arXiv:math/0309355.Google Scholar
Karoui, N. E. (2007). Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices. The Annals of Probability, 35, 663714.CrossRefGoogle Scholar
Kendall, M. G., & Yule, G. U. (1950). An introduction to the theory of statistics, London: Charles Griffin & Company.Google Scholar
Koster, M., Timmerman, M. E., Nakken, H., Pijl, S. J., & van Houten, E. J. (2009). Evaluating social participation of pupils with special needs in regular primary schools. European Journal of Psychological Assessment, 25, (4), 213222.CrossRefGoogle Scholar
Kritchman, S., & Nadler, B. (2008). Determining the number of components in a factor model from limited noisy data. Chemometrics and Intelligent Laboratory Systems, 94, (1), 1932.CrossRefGoogle Scholar
Kuppens, P., Ceulemans, E., Timmerman, M. E., Diener, E., & Kim-Prieto, C. (2006). Universal intracultural and intercultural dimensions of the recalled frequency of emotional experience. Journal of Cross-Cultural Psychology, 37, (5), 491515.CrossRefGoogle Scholar
Ledesma, R. D., & Valero-Mora, P. (2007). Determining the number of factors to retain in EFA: an easy-to-use computer program for carrying out parallel analysis. Practical Assessment, Research & Evaluation, 12, (2), 111.Google Scholar
Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. (2011). The hull method for selecting the number of common factors. Multivariate Behavioral Research, 46, (2), 340364.CrossRefGoogle ScholarPubMed
Pan, G. (2012). Comparison between two types of large sample covariance matrices. In Institut Henri Poincaré: Ann.Google Scholar
Patterson, N., Price, A. L., & Reich, D. (2006). Population structure and eigenanalysis. PLoS Genetics, 2, (12), e190CrossRefGoogle ScholarPubMed
Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica, 17, (4), 1617Google Scholar
Paul, D., & Aue, A. (2014). Random matrix theory in statistics: A review. Journal of Statistical Planning and Inference, 150, 129.CrossRefGoogle Scholar
Peres-Neto, P. R., Jackson, D. A., & Somers, K. M. (2005). How many principal components? stopping rules for determining the number of non-trivial axes revisited. Computational Statistics & Data Analysis, 49, (4), 974997.CrossRefGoogle Scholar
Pillai, N. S., & Yin, J. (2012). Edge universality of correlation matrices. The Annals of Statistics, 40, (3), 17371763.CrossRefGoogle Scholar
Raskin, R., & Hall, C. (1979). A narcissistic personality inventory. Psychological Reports, 45, (2), 590590.CrossRefGoogle ScholarPubMed
Raskin, R., & Terry, H. (1988). A principal-components analysis of the narcissistic personality inventory and further evidence of its construct validity. Journal of Personality and Social Psychology, 54, (5), 890CrossRefGoogle ScholarPubMed
Rice, S., & Church, M. (1996). Sampling surficial fluvial gravels: the precision of size distribution percentile estimates. Journal of Sedimentary Research, 66, (3), 654665.CrossRefGoogle Scholar
Saccenti, E., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. (2011). Tracy-Widom statistic for the largest eigenvalue of autoscaled real matrices. Journal of Chemometrics, 25, (12), 644652.CrossRefGoogle Scholar
Saccenti, E., & Camacho, J. (2015). Determining the number of components in principal components analysis: A comparison of statistical, crossvalidation and approximated methods. Chemometrics and Intelligent Laboratory Systems, 149(Part A), 99–116.CrossRefGoogle Scholar
Saccenti, E., & Timmerman, M. E. (2016). Approaches to sample size determination for multivariate data: Applications to PCA and PLS-DA of omics data. Journal of Proteome Research, 15, 2379–2393.CrossRefGoogle Scholar
Smits, I. A., Timmerman, M. E., & Meijer, R. R. (2012). Exploratory Mokken scale analysis as a dimensionality assessment tool why scalability does not imply unidimensionality. Applied Psychological Measurement, 36, (6), 516539.CrossRefGoogle Scholar
Soshnikov, A. (2002). A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. Journal of Statistical Physics, 108, (5), 10331056.CrossRefGoogle Scholar
Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications, Washington, DC: American Psychological.CrossRefGoogle Scholar
Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16, (2), 209CrossRefGoogle ScholarPubMed
Tracy, C. A., Widom, H. (2009). The distributions of random matrix theory and their applications. In New trends in mathematical physics (pp. 753765). Springer: New York.CrossRefGoogle Scholar
Tracy, C. A., & Widom, H. (1993). Level-spacing distributions and the airy kernel. Physics Letters B, 305, (1), 115118.CrossRefGoogle Scholar
Tracy, C. A., & Widom, H. (1994). Level-spacing distributions and the airy kernel. Communications in Mathematical Physics, 159, (1), 151174.CrossRefGoogle Scholar
Tracy, C. A., & Widom, H. (1996). On orthogonal and symplectic matrix ensembles. Communications in Mathematical Physics, 177, (3), 727754.CrossRefGoogle Scholar
Tucker, L. R., Koopman, R. F., & Linn, R. L. (1969). Evaluation of factor analytic research procedures by means of simulated correlation matrices. Psychometrika, 34, (4), 421459.CrossRefGoogle Scholar
Wilderjans, T. F., Ceulemans, E., & Meers, K. (2013). CHull: A generic convex-hull-based model selection method. Behavior Research Methods, 45, (1), 115.CrossRefGoogle ScholarPubMed
Wishart, J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika pp. 32–52.CrossRefGoogle Scholar
Zwick, W. R., & Velicer, W. F. (1982). Factors influencing four rules for determining the number of components to retain. Multivariate Behavioral Research, 17, (2), 253269.CrossRefGoogle ScholarPubMed