Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T01:49:20.928Z Has data issue: false hasContentIssue false

Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models

Published online by Cambridge University Press:  01 January 2025

Yinghan Chen*
Affiliation:
University of Nevada, Reno
Steven Andrew Culpepper
Affiliation:
University of Illinois at Urbana-Champaign
Yuguo Chen
Affiliation:
University of Illinois at Urbana-Champaign
*
Correspondence should bemade to Yinghan Chen, Department of Mathematics and Statistics, University of Nevada,Reno, 1664 North Virginia Street, Reno, NV, 89557, USA. Email: yinghanc@unr.edu

Abstract

The specification of the Q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\varvec{Q}}$$\end{document} matrix in cognitive diagnosis models is important for correct classification of attribute profiles. Researchers have proposed many methods for estimation and validation of the data-driven Q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\varvec{Q}}$$\end{document} matrices. However, inference of the number of attributes in the general restricted latent class model remains an open question. We propose a Bayesian framework for general restricted latent class models and use the spike-and-slab prior to avoid the computation issues caused by the varying dimensions of model parameters associated with the number of attributes, K. We develop an efficient Metropolis-within-Gibbs algorithm to estimate K and the corresponding Q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\varvec{Q}}$$\end{document} matrix simultaneously. The proposed algorithm uses the stick-breaking construction to mimic an Indian buffet process and employs a novel Metropolis–Hastings transition step to encourage exploring the sample space associated with different values of K. We evaluate the performance of the proposed method through a simulation study under different model specifications and apply the method to a real data set related to a fluid intelligence matrix reasoning test.

Type
Theory and Methods
Copyright
Copyright © 2023 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brooks, S. P.,Giudici, P., &Roberts, G. O.(2003).Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions.Journal of the Royal Statistical Society: Series B (Statistical Methodology),65(1),339.CrossRefGoogle Scholar
Celeux, G.,Forbes, F.,Robert, C. P., &Titterington, D. M.Deviance information criteria for missing data models.Bayesian Analysis,(2006).1(4),651673.CrossRefGoogle Scholar
Chen, Y.,Culpepper, S., &Liang, F.A sparse latent class model for cognitive diagnosis.Psychometrika,(2020).85(1),121153.CrossRefGoogle ScholarPubMed
Chen, Y.,Liu, Y.,Culpepper, S. A., &Chen, Y.(2021).Inferring the number of attributes for the exploratory DINA model.Psychometrika,86(1),3064.CrossRefGoogle ScholarPubMed
Chen, Y.,Liu, J.,Xu, G., &Ying, Z.(2015).Statistical analysis of Q-matrix based diagnostic classification models.Journal of the American Statistical Association,110(510),850866.CrossRefGoogle Scholar
Chiu, C-Y(2013).Statistical refinement of the Q-matrix in cognitive diagnosis.Applied Psychological Measurement,37(8),598618.CrossRefGoogle Scholar
Chung, M.,Kao, H.-Y., &Liao, H-C(2021).A PCA approach to estimate the Q-matrix.2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI),Taichung.243245.CrossRefGoogle Scholar
Culpepper, S. A., &Chen, Y.(2019).Development and application of an exploratory reduced reparameterized unified model.Journal of Educational and Behavioral Statistics,44(1),324.CrossRefGoogle Scholar
de la Torre, J.(2008).An empirically based method of Q-matrix validation for the DINA model: Development and applications.Journal of Educational Measurement,45(4),343362.CrossRefGoogle Scholar
de la Torre, J.(2011).The generalized DINA model framework.Psychometrika,76(2),179199.CrossRefGoogle Scholar
de la Torre, J., &Chiu, C.-Y.(2016).A general method of empirical Q-matrix validation.Psychometrika,81(2),253273.CrossRefGoogle ScholarPubMed
de la Torre, J., &Douglas, J. A.(2004).Higher-order latent trait models for cognitive diagnosis.Psychometrika,69(3),333353.CrossRefGoogle Scholar
Dean, N., &Raftery, A. E.(2010).Latent class analysis variable selection.Annals of the Institute of Statistical Mathematics,62(1),1135.20827439CrossRefGoogle ScholarPubMed
Garrett, E. S., &Zeger, S. L.(2000).Latent class model diagnosis.Biometrics,56(4),10551067.CrossRefGoogle ScholarPubMed
Gilks, W. R., &Wild, P.(1992).Adaptive rejection sampling for Gibbs sampling.Journal of the Royal Statistical Society: Series C (Applied Statistics),41(2),337348.Google Scholar
Görür, D., &Teh, Y. W.(2011).Concave-convex adaptive rejection sampling.Journal of Computational and Graphical Statistics,20(3),670691.CrossRefGoogle Scholar
Green, P. J.(1995).Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.Biometrika,82(4),711732.CrossRefGoogle Scholar
Griffiths, T. L.,Ghahramani, Z.(2005).Infinite latent feature models and the Indian buffet process (Technical Report 2005–001),Gatsby Computational Neuroscience Unit.Google Scholar
Hartz, S. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality (Doctoral dissertation). University of Illinois at Urbana-Champaign.Google Scholar
Hoijtink, H.(2001).Confirmatory latent class analysis: Model selection using Bayes factors and (pseudo) likelihood ratio statistics.Multivariate Behavioral Research,36(4),563588.CrossRefGoogle ScholarPubMed
Junker, B. W., &Sijtsma, K.(2001).Cognitive assessment models with few assumptions, and connections with nonparametric item response theory.Applied Psychological Measurement,25(3),258272.CrossRefGoogle Scholar
Narisetty, N. N., &He, X.(2014).Bayesian variable selection with shrinking and diffusing priors.The Annals of Statistics,42(2),789817.CrossRefGoogle Scholar
Nasserinejad, K.,van Rosmalen, J.,de Kort, W., &Lesaffre, E.(2017).Comparison of criteria for choosing the number of classes in Bayesian finite mixture models.PLoS ONE,12(1),123.CrossRefGoogle ScholarPubMed
Nobile, A., &Fearnside, A. T.(2007).Bayesian finite mixtures with an unknown number of components: The allocation sampler.Statistics and Computing,17(2),147162.CrossRefGoogle Scholar
Pan, J.-C., &Huang, G.-H.(2014).Bayesian inferences of latent class models with an unknown number of classes.Psychometrika,79(4),621646.CrossRefGoogle ScholarPubMed
Park, T., &Casella, G.(2008).The Bayesian lasso.Journal of the American Statistical Association,103(482),681686.CrossRefGoogle Scholar
Ročková, V., &George, E. I.(2018).The spike-and-slab lasso.Journal of the American Statistical Association,113(521),431444.CrossRefGoogle Scholar
Rousseau, J., &Mengersen, K.(2011).Asymptotic behaviour of the posterior distribution in overfitted mixture models.Journal of the Royal Statistical Society: Series B (Statistical Methodology),73(5),689710.CrossRefGoogle Scholar
Sen, S., & Cohen, A. S. (2021). Sample size requirements for applying diagnostic classification models. Front Psychol, 11 .CrossRefGoogle Scholar
Spiegelhalter, D. J.,Best, N. G.,Carlin, B. P., &Van Der Linde, A.(2002).Bayesian measures of model complexity and fit.Journal of the Royal Statistical Society: Series B,64(4),583639.CrossRefGoogle Scholar
Teh, Y. W., Grür, D., & Ghahramani, Z. (2007). Stick-breaking construction for the Indian buffet process. In M. Meila & X. Shen (Eds.), Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (pp. 556-563). San Juan, Puerto Rico.Google Scholar
Thibaux, R., & Jordan, M. I. (2007). Hierarchical beta processes and the Indian buffet process. In M. Meila & X. Shen (Eds.), Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (pp. 564-571). San Juan, Puerto Rico.Google Scholar
Vehtari, A.,Gelman, A., &Gabry, J.(2017).Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC.Statistics and Computing,27(5),14131432.CrossRefGoogle Scholar
von Davier, M.(2008).A general diagnostic model applied to language testing data.British Journal of Mathematical and Statistical Psychology,61(2),287307.CrossRefGoogle ScholarPubMed
Walker, S. G.(2007).Sampling the Dirichlet mixture model with slices.Communications in Statistics-Simulation and Computation,36(1),4554.CrossRefGoogle Scholar
White, A.,Wyse, J., &Murphy, T. B.(2016).Bayesian variable selection for latent class analysis using a collapsed Gibbs sampler.Statistics and Computing,26(1–2),511527.CrossRefGoogle Scholar
Xu, G.(2017).Identifiability of restricted latent class models with binary responses.The Annals of Statistics,45(2),675707.CrossRefGoogle Scholar
Xu, G., &Shang, Z.(2018).Identifying latent structures in restricted latent class models.Journal of the American Statistical Association,113(523),12841295.CrossRefGoogle Scholar