Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T22:37:32.787Z Has data issue: false hasContentIssue false

Bayesian Estimation and Model Selection in Ordered Latent Class Models for Polytomous Items

Published online by Cambridge University Press:  01 January 2025

M. J. H. van Onna*
Affiliation:
Department of Methodology and Statistics, Tilburg University
*
Requests for reprints should be sent to Marieke van Onna, Department of Methodology and Statistics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, THE NETHERLANDS. E-Mail: marieke.vanonna@uvt.nl

Abstract

In a latent class IRT model in which the latent classes are ordered on one dimension, the class specific response probabilities are subject to inequality constraints. The number of these inequality constraints increase dramatically with the number of response categories per item, if assumptions like monotonicity or double monotonicity of the cumulative category response functions are postulated. A Markov chain Monte Carlo method, the Gibbs sampler, can sample from the multivariate posterior distribution of the parameters under the constraints. Bayesian model selection can be done by posterior predictive checks and Bayes factors. A simulation study is done to evaluate results of the application of these methods to ordered latent class models in three realistic situations. Also, an example of the presented methods is given for existing data with polytomous items. It can be concluded that the Bayesian estimation procedure can handle the inequality constraints on the parameters very well. However, the application of Bayesian model selection methods requires more research.

Type
Articles
Copyright
Copyright © 2002 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported by the Netherlands Organization for Scientific Research (NWO), grant number 400-20-027. I would like to thank Ivo Molenaar, Herbert Hoijtink, Anne Boomsma, Marijtje van Duijn and the reviewers for their useful comments. I would also like to thank Sandra van Abswoude for her help with DETECT.

References

Bartholomew, D.J., & Tzamourani, P. (1999). The goodness of fit of latent trait models in attitude measurement. Sociological Methods and Research, 27, 525546.CrossRefGoogle Scholar
Bayarri, M.J., & Berger, J.O. (2000). P values for composite null models. Journal of the American Statistical Association, 95, 11271142.Google Scholar
Cavalini, P.M. (1992). It's an ill wind that brings no good: Studies on odour annoyance and the dispersion of odorant concentrations from industries. Groningen: University Press Groningen.Google Scholar
Croon, M. (1990). Latent class analysis with ordered latent classes. British Journal of Mathematical and Statistical Psychology, 43, 171192.CrossRefGoogle Scholar
Croon, M.A. (1991). Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis. British Journal of Mathematical and Statistical Psychology, 44, 315331.CrossRefGoogle Scholar
Gelfand, A.E., Smith, A.F.M., & Lee, T.M. (1992). Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. Journal of the American Statistical Association, 87, 523532.CrossRefGoogle Scholar
Gelman, A. (1996). Inference and monitoring convergence. In Wilks, W.R., Richardson, S., & Spiegelhalter, D.J. (Eds.), Markov Chain Monte Carlo in practice. Interdisciplinary statistics (pp. 131143). London: Chapman & Hall.Google Scholar
Gelman, A. (1996). Bayesian model-building by pure thought: Some principles and examples. Statistica Sinica, 6, 215232.Google Scholar
Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995). Bayesian data analysis. London: Chapman & Hall.CrossRefGoogle Scholar
Gelman, A., Meng, X.L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733807.Google Scholar
Heinen, T. (1993). Discrete latent variable models. Tilburg: University Press.Google Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679693.CrossRefGoogle Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the some score in polytomous IRT models. Psychometrika, 62, 331347.CrossRefGoogle Scholar
Hoijtink, H. (1998). Constrained latent class analysis using the Gibbs sampler and posterior predictivep-values: Applications to educational testing. Statistica Sinica, 8, 691711.Google Scholar
Hoijtink, H., & Molenaar, I.W. (1997). A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks. Psychometrika, 62, 171189.CrossRefGoogle Scholar
Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773795.CrossRefGoogle Scholar
Meng, X.L. (1994). Posterior predictivep-values. The Annals of Statistics, 22, 11421160.CrossRefGoogle Scholar
Mokken, R.J. (1971). A theory and procedure of scale analysis. The Hague: Mouton de Gruyter.CrossRefGoogle Scholar
Molenaar, I.W., Sijtsma, K. (2000). User's manual MSP5 for Windows. A program for Mokken scale analysis for polytomous items. Groningen: iec ProGAMMA.Google Scholar
Newton, M.A., & Raftery, A.E. (1994). Approximate Bayesian inference with the weighted likelihood bootstrap. Journal of the Royal Statistical Society, Series B, 56, 348.CrossRefGoogle Scholar
Post, W., & Snijders, T.A.B. (1993). Nonparametric unfolding models for dichotomous data. Methodika, 7, 130156.Google Scholar
Reiser, M., & Lin, Y. (1999). A goodness-of-fit test for the latent class model when expected frequencies are small. Sociological Methodology, 29, 81111.CrossRefGoogle Scholar
Robins, J.M., van der Vaart, A., & Ventura, V. (2000). Asymptotic distributions ofP values in composite null models. Journal of the American Statistical Association, 95, 11431156.Google Scholar
Rubin, D.B., & Stern, H.S. (1994). Testing in latent class models using a posterior predictive check distribution. In von Eye, A., Clogg, C.C. (Eds.), Latent variables analysis. Applications for developmental research (pp. 420438). Thousand Oaks: Sage.Google Scholar
Sijtsma, K. (1998). Methodology review: Nonparametric IRT approaches to the analysis of dichotomous item scores. Applied Psychological Measurement, 22, 331.CrossRefGoogle Scholar
Sijtsma, K., & Hemker, B.T. (1998). Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models. Psychometrika, 63, 183200.CrossRefGoogle Scholar
Stephens, M. (2000). Bayesian analysis of mixture models with an unknown number of components. An alternative to reversible jump methods. The Annals of Statistics, 28, 4074.CrossRefGoogle Scholar
Stout, W., Habing, B., Douglas, J., Kim, H.R., Roussos, L., & Zhang, J. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20, 331354.CrossRefGoogle Scholar
Tanner, M.A., & Wong, W.H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82, 528540.CrossRefGoogle Scholar
van Schuur, W.H. (1993). Nonparametric unidimensional unfolding for multicategory data. Political Analysis, 4, 4174.CrossRefGoogle Scholar
Vermunt, J.K. (1997). LEM: A general program for the analysis of categorical data. Tilburg: Tilburg University.Google Scholar
Vermunt, J.K. (1999). A general class of nonparametric models for ordinal categorical data. Sociological Methodology, 29, 187223.CrossRefGoogle Scholar
von Davier, M. (1997). Bootstrapping goodness-of-fit statistics for sparse categorical data—Results of a Monte Carlo study. Methods of Psychological Research Online, 2, 2948.Google Scholar