Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:57:06.127Z Has data issue: false hasContentIssue false

Automatic Bayes Factors for Testing Equality- and Inequality-Constrained Hypotheses on Variances

Published online by Cambridge University Press:  01 January 2025

Florian Böing-Messing*
Affiliation:
Jheronimus Academy of Data Science Tilburg University
Joris Mulder
Affiliation:
Tilburg University
*
Correspondence should be made to Florian Böing-Messing, Jheronimus Academy of Data Science, Sint Janssingel 92, 5211 DA ’s-Hertogenbosch, The Netherlands. Email:florian.boeingmessing@gmail.com

Abstract

In comparing characteristics of independent populations, researchers frequently expect a certain structure of the population variances. These expectations can be formulated as hypotheses with equality and/or inequality constraints on the variances. In this article, we consider the Bayes factor for testing such (in)equality-constrained hypotheses on variances. Application of Bayes factors requires specification of a prior under every hypothesis to be tested. However, specifying subjective priors for variances based on prior information is a difficult task. We therefore consider so-called automatic or default Bayes factors. These methods avoid the need for the user to specify priors by using information from the sample data. We present three automatic Bayes factors for testing variances. The first is a Bayes factor with equal priors on all variances, where the priors are specified automatically using a small share of the information in the sample data. The second is the fractional Bayes factor, where a fraction of the likelihood is used for automatic prior specification. The third is an adjustment of the fractional Bayes factor such that the parsimony of inequality-constrained hypotheses is properly taken into account. The Bayes factors are evaluated by investigating different properties such as information consistency and large sample consistency. Based on this evaluation, it is concluded that the adjusted fractional Bayes factor is generally recommendable for testing equality- and inequality-constrained hypotheses on variances.

Type
Original Paper
Copyright
Copyright © The Psychometric Society 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.Petrov, B. N., &Csáki, F. 2nd international symposium on information theory.Budapest:Akadémiai Kiadó.267281.Google Scholar
Arden, R., &Plomin, R. (2006). Sex differences in variance of intelligence across childhood.Personality and Individual Differences, 41(1),3948.CrossRefGoogle Scholar
Aunola, K.,Leskinen, E.,Lerkkanen, M.-K., &Nurmi, J.-E. (2004). Developmental dynamics of math performance from preschool to grade 2.Journal of Educational Psychology, 96(4),699713.CrossRefGoogle Scholar
Bartlett, M. S. (1957). A comment on D. V. Lindley’s statistical paradox.Biometrika, 44(3–4),533534.CrossRefGoogle Scholar
Berger, J. O. (2006). The case for objective Bayesian analysis.Bayesian Analysis, 1(3),385402.CrossRefGoogle Scholar
Berger, J. O.Mortera, J. (1999). Default Bayes factors for nonnested hypothesis testing.Journal of the American Statistical Association, 94(446),542554.CrossRefGoogle Scholar
Berger, J. O.Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction.Journal of the American Statistical Association, 91(433),109122.CrossRefGoogle Scholar
Berger, J. O., & Pericchi, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison. In Lahiri, P. (Ed.), Model selection (pp. 135–207). Beachwood, OH: Institute of Mathematical Statistics.Google Scholar
Berger, J. O., &Sellke, T. (1987). Testing a point null hypothesis: The irreconcilability of P\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P$$\end{document} values and evidence.Journal of the American Statistical Association, 82(397),112122.Google Scholar
Böing-Messing, F., &Mulder, J. (2016). Automatic Bayes factors for testing variances of two independent normal distributions.Journal of Mathematical Psychology, 72 158170.CrossRefGoogle Scholar
Böing-Messing, F.,van Assen, MALM.,Hofman, AD.,Hoijtink, H., &Mulder, J. (2017). Bayesian evaluation of constrained hypotheses on variances of multiple independent groups.Psychological Methods, 22(2),262287.CrossRefGoogle ScholarPubMed
Carroll, R. J. (2003). Variances are not always nuisance parameters.Biometrics, 59(2),211220.CrossRefGoogle Scholar
De Santis, F., &Spezzaferri, F. (2001). Consistent fractional Bayes factor for nested normal linear models.Journal of Statistical Planning and Inference, 97(2),305321.CrossRefGoogle Scholar
Fox, J.-P.,Mulder, J., &Sinharay, S. (2017). Bayes factor covariance testing in item response models.Psychometrika, 82(4),9791006.CrossRefGoogle ScholarPubMed
Gelman, A.,Carlin, J. B.,Stern, H. S., &Rubin, DB. (2004). Bayesian data analysis.2Boca Raton, FL:Chapman & Hall/CRC.Google Scholar
Gilks, W. R. (1995). Discussion of O’Hagan.Journal of the Royal Statistical Society. Series B (Methodological), 57(1),118120.Google Scholar
Grissom, R. J. (2000). Heterogeneity of variance in clinical data.Journal of Consulting and Clinical Psychology, 68(1),155165.CrossRefGoogle ScholarPubMed
Hoijtink, H. (2011). Informative hypotheses: Theory and practice for behavioral and social scientists.Boca Raton, FL:Chapman & Hall/CRC.CrossRefGoogle Scholar
Jefferys, W. H., &Berger, J. O. (1992). Ockham’s razor and Bayesian analysis.American Scientist, 80(1),6472.Google Scholar
Jeffreys, H. (1961). Theory of probability.3Oxford:Oxford University Press.Google Scholar
Kass, R. E., &Raftery, A. E. (1995). Bayes factors.Journal of the American Statistical Association, 90(430),773795.CrossRefGoogle Scholar
Klugkist, I.,Laudy, O., &Hoijtink, H. (2005). Inequality constrained analysis of variance: A Bayesian approach.Psychological Methods, 10(4),477493.CrossRefGoogle ScholarPubMed
Kofler, M. J.,Rapport, M. D.,Sarver, D. E.,Raiker, J. S.,Orban, S. A.,Friedman, L. M.,et.al (2013). Reaction time variability in ADHD: A meta-analytic review of 319 studies.Clinical Psychology Review, 33(6),795811.CrossRefGoogle ScholarPubMed
Lehre, A.-C.,Lehre, K. P.,Laake, P., &Danbolt, N. C. (2009). Greater intrasex phenotype variability in males than in females is a fundamental aspect of the gender differences in humans.Developmental Psychobiology, 51(2),198206.CrossRefGoogle ScholarPubMed
Liang, F.,Paulo, R.,Molina, G.,Clyde, M. A., &Berger, J. O. (2008). Mixtures of g\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$g$$\end{document} priors for Bayesian variable selection.Journal of the American Statistical Association, 103(481),410423.CrossRefGoogle Scholar
Lindley, D. V. (1957). A statistical paradox.Biometrika, 44(1–2),187192.CrossRefGoogle Scholar
Lucas, J. W. (2003). Status processes and the institutionalization of women as leaders.American Sociological Review, 68(3),464480.CrossRefGoogle Scholar
Mulder, J. (2014). Bayes factors for testing inequality constrained hypotheses: Issues with prior specification.British Journal of Mathematical and Statistical Psychology, 67(1),153171.CrossRefGoogle ScholarPubMed
Mulder, J. (2014). Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses.Computational Statistics & Data Analysis, 71,448463.CrossRefGoogle Scholar
Mulder, J. (2016). Bayes factors for testing order-constrained hypotheses on correlations.Journal of Mathematical Psychology, 72,104115.CrossRefGoogle Scholar
Mulder, J., &Fox, J-P. (2013). Bayesian tests on components of the compound symmetry covariance matrix.Statistics and Computing, 23(1),109122.CrossRefGoogle Scholar
Mulder, J.,Hoijtink, H., &de Leeuw, C. (2012). BIEMS: A Fortran 90 program for calculating Bayes factors for inequality and equality constrained models.Journal of Statistical Software, 46(2),139.CrossRefGoogle Scholar
Mulder, J.,Hoijtink, H., &Klugkist, I. (2010). Equality and inequality constrained multivariate linear models: Objective model selection using constrained posterior priors.Journal of Statistical Planning and Inference, 140(4),887906.CrossRefGoogle Scholar
Mulder, J.,Klugkist, I.,van de Schoot, R.,Meeus, W. H.,Selfhout, M., &Hoijtink, H. (2009). Bayesian model selection of informative hypotheses for repeated measurements.Journal of Mathematical Psychology, 53(6),530546.CrossRefGoogle Scholar
Mulder, J., &Wagenmakers, E-J. (2016). Editors’ introduction to the special issue "Bayes factors for testing hypotheses in psychological research: Practical relevance and new developments".Journal of Mathematical Psychology, 72 15.CrossRefGoogle Scholar
O’Hagan, A. (1995). Fractional Bayes factors for model comparison.Journal of the Royal Statistical Society. Series B (Methodological), 57(1),99138.CrossRefGoogle Scholar
O’Hagan, A. (1997). Properties of intrinsic and fractional Bayes factors.Test, 6(1),101118.CrossRefGoogle Scholar
Ruscio, J., &Roche, B. (2012). Variance heterogeneity in published psychological research: A review and a new index.Methodology, 8(1),111.CrossRefGoogle Scholar
Russell, V. A.,Oades, R. D.,Tannock, R.Killeen, P. R.,Auerbach, J. G.,Johansen, E. B., et.al (2006). Response variability in attention-deficit/hyperactivity disorder: A neuronal and glial energetics hypothesis.Behavioral and Brain Functions, 2(1),125.CrossRefGoogle ScholarPubMed
Schwarz, G. (1978). Estimating the dimension of a model.The Annals of Statistics, 6(2),461464.CrossRefGoogle Scholar
Silverstein, S. M.,Como, P. G.,Palumbo, D. R.,West, L. L., &Osborn, L. M. (1995). Multiple sources of attentional dysfunction in adults with Tourette’s syndrome: Comparison with attention deficit-hyperactivity disorder.Neuropsychology, 9(2),157164.CrossRefGoogle Scholar
Snijders, T. A. B., &Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling.2London:Sage.Google Scholar
Spiegelhalter, D. J., &Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information.Journal of the Royal Statistical Society. Series B (Methodological), 44(3),377387.CrossRefGoogle Scholar
Verhagen, A. J., &Fox, J-P. (2013). Bayesian tests of measurement invariance.British Journal of Mathematical and Statistical Psychology, 66(3),383401.CrossRefGoogle ScholarPubMed
Wagenmakers, E-J. (2007). A practical solution to the pervasive problems of p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p$$\end{document} values.Psychonomic Bulletin & Review, 14(5),779804.CrossRefGoogle Scholar
Weerahandi, S. (1995). ANOVA under unequal error variances.Biometrics, 51(2),589599.CrossRefGoogle Scholar
Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$g$$\end{document}-prior distributions.Goel, P. K., &Zellner, A. Bayesian inference and decision techniques: Essays in honor of Bruno de Finetti, Amsterdam, The Netherlands:Elsevier.233243.Google Scholar
Supplementary material: File

Böing-Messing et al. supplementary material

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11336-018-9615-z) contains supplementary material, which is available to authorized users.
Download Böing-Messing et al. supplementary material(File)
File 15.6 KB