Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:56:11.414Z Has data issue: false hasContentIssue false

An Incomplete Data Approach to the Analysis of Covariance Structures

Published online by Cambridge University Press:  01 January 2025

H. T. Kiiveri*
Affiliation:
CSIRO, Division of Mathematics and Statistics, Western Australia
*
Requests for reprints should be sent to H. T. Kiiveri, CSIRO Division of Mathematics and Statistics, Private Bag P.O., Wembley, Western Australia 6014, AUSTRALIA.

Abstract

In this paper, linear structural equation models with latent variables are considered. It is shown how many common models arise from incomplete observation of a relatively simple system. Subclasses of models with conditional independence interpretations are also discussed. Using an incomplete data point of view, the relationships between the incomplete and complete data likelihoods, assuming normality, are highlighted. For computing maximum likelihood estimates, the EM algorithm and alternatives are surveyed. For the alternative algorithms, simplified expressions for computing function values and derivatives are given. Likelihood ratio tests based on complete and incomplete data are related, and an example on using their relationship to improve the fit of a model is given.

Type
Original Paper
Copyright
Copyright © 1987 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research forms part of the author's doctoral thesis and was supported by a Commonwealth Postgraduate Research Award. The author also wishes to acknowledge the support of CSIRO during the preparation of this paper and the referees' comments which led to substantial improvements.

References

Bentler, P. M. (1983). Some contributions to efficient statistics in structural models: Specification and estimation of moment structure. Psychometrika, 48, 493517.CrossRefGoogle Scholar
Bentler, P. M., Tanaka, J. S. (1983). Problems with EM algorithms for ML factor analysis. Psychometrika, 48, 247251.CrossRefGoogle Scholar
Bentler, P. M., Weeks, D. G. (1980). Linear structural equations with latent variables. Psychometrika, 45, 289308.CrossRefGoogle Scholar
Campbell, N. A. (1980). Robust procedures in multivariate analysis. I: Robust covariance estimation. Journal of the Royal Statistical Society, Series C, 29, 231237.Google Scholar
Dempster, A. P. (1972). Covariance selection. Biometrics, 28, 157175.CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 121.CrossRefGoogle Scholar
Gnanadesikan, R. (1977). Methods for statistical data analysis of multivariate observations, New York: Wiley.Google Scholar
Gruveaus, G., Jöreskog, K. G. (1970). A computer program for minimizing a function of several variables, Princeton, NJ: Education Testing Service.Google Scholar
Jöreskog, K. G. (1977). Structural equation models in the social sciences: Specification estimation and testing. In Krishnaiah, P. R. (Eds.), Applications of statistics, Amsterdam: North Holland.Google Scholar
Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices. Psychometrika, 43, 443477.CrossRefGoogle Scholar
Jöreskog, K. G., Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 10, 631639.Google Scholar
Jöreskog, K. G., Sörbom, D. (1981). LISREL V users guide, Chicago: International Educational Services.Google Scholar
Kiiveri, H. T. (1981). Discussion of K. G. Jöreskog's paper, Analysis of covariance structures, presented at the 8th Nordic conference on mathematical statistics, Mariehamn, Finland, May 1980. Scandinavian Journal of Statistics, 8, 8486.Google Scholar
Kiiveri, H. T. (1982). A unified theory of causal models. Unpublished doctoral dissertation, University of Western Australia, Perth.Google Scholar
Kiiveri, H. T., Speed, T. P. (1982). Structural analysis of multivariate data: A review. In Leinhardt, S. (Eds.), Sociological methodology 1982, San Francisco: Jassey-Bass.Google Scholar
Kiiveri, H. T., Speed, T. P., Carlin, J. B. (1984). Recursive causal models. Journal of the Australian Mathematical Society, 36, 3052.CrossRefGoogle Scholar
Land, K. C. (1973). Identification, parameter estimation and hypothesis testing in recursive sociological models. In Goldberger, A. S., Duncan, O. D. (Eds.), Structural equation models in the social sciences, New York: Seminar Press.Google Scholar
Lawley, D. N., Maxwell, A. E. (1971). Factor analysis as a statistical method, London: Butterworth.Google Scholar
Lee, S. Y. (1980). The penalty function method in constrained estimation of covariance models. Psychometrika, 45, 309324.CrossRefGoogle Scholar
Luenberger, D. G. (1973). Introduction to linear and nonlinear programming, Reading, MA: Addison-Wesley.Google Scholar
Mardia, K. V., Marshall, R. J. (1984). Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika, 71, 135146.CrossRefGoogle Scholar
McArdle, J. J., McDonald, R. P. (1984). Some algebraic properties of the reticular action model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234251.CrossRefGoogle ScholarPubMed
McDonald, R. P. (1978). A simple comprehensive model for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 31, 5972.CrossRefGoogle Scholar
McDonald, R. P. (1980). A simple comprehensive model for the analysis of covariance structures: some remarks on applications. British Journal of Mathematical and Statistical Psychology, 33, 161183.CrossRefGoogle Scholar
McDonald, R. P., Krane, W. R. (1977). A note on local identifiability and degrees of freedom in the asymptotic likelihood ratio test. British Journal of Mathematical and Statistical Psychology, 30, 198203.CrossRefGoogle Scholar
McDonald, R. P., Krane, W. R. (1979). A Monte-Carlo study of local identifiability and degrees of freedom in the asymptotic likelihood ratio test. British Journal of Mathematical and Statistical Psychology, 32, 121132.CrossRefGoogle Scholar
Orchard, J., Woodbury, M. A. (1972). A missing information principle: Theory and applications. In LeCam, L. M., Neyman, J., Scott, E. L. (Eds.), Sixth Berkeley symposium on mathematical statistics and probability (pp. 697715). Berkeley: University of California Press.Google Scholar
Rubin, D. B., Thayer, D. T. (1982). EM algorithms for ML factor analysis. Psychometrika, 47, 6976.CrossRefGoogle Scholar
Rubin, D. B., Thayer, D. T. (1983). More on EM and ML factor analysis. Psychometrika, 48, 253257.CrossRefGoogle Scholar
Speed, T. P., Kiiveri, H. T. (1986). Gaussian Markov distributions over finite graphs. Annals of Statistics, 14, 138150.CrossRefGoogle Scholar
Wermuth, N. (1980). Linear recursive equations, covariance selection and path analysis. Journal of the American Statistical Association, 75, 963972.CrossRefGoogle Scholar
Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics, 11, 95103.CrossRefGoogle Scholar