Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T16:48:26.182Z Has data issue: false hasContentIssue false

An Extension of Multiple Correspondence Analysis for Identifying Heterogeneous Subgroups of Respondents

Published online by Cambridge University Press:  01 January 2025

Heungsun Hwang*
Affiliation:
HEC Montréal
William R. Dillon
Affiliation:
Southern Methodist University
Yoshio Takane
Affiliation:
McGill University
*
Requests for reprints should be sent to Heungsun Hwang, Department of Marketing, HEC Montréal, 3000 Chemin de la Côte Ste Catherine, Montréal, QC, H3T-2A7, Canada. E-mail: heungsun.hwang@hec.ca

Abstract

An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents’ preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables while the latter is used for identifying relatively homogeneous clusters of respondents. The proposed method offers an integrated graphical display that provides information on cluster-based structures inherent in multivariate categorical data as well as the interdependencies among the data. An empirical application is presented which demonstrates the usefulness of the proposed method and how it compares to several extant approaches.

Type
Original Paper
Copyright
Copyright © 2006 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The work reported in this paper was supported by Grant 290439 and Grant A6394 from the Natural Sciences and Engineering Research Council of Canada to the first and third authors, respectively. We wish to thank Ulf Böckenholt, Paul Green, and Marc Tomiuk for their insightful comments on an earlier version of this paper. We also wish to thank Byunghwa Yang for generously providing us with his data.

References

Arabie, P., & Hubert, L. (1994). Cluster analysis in marketing research. In Bagozzi, R.P. (Eds.), Advanced methods of marketing research (pp. 160189). Oxford: Blackwell.Google Scholar
Arimond, G., & Elfessi, A. (2001). A clustering method for categorical data in tourism market segmentation research. Journal of Travel Research, 39, 391397.CrossRefGoogle Scholar
Bagozzi, R.P. (1982). A field investigation of causal relations among cognition, affect, intensions, and behavior. Journal of Marketing Research, 19, 562584.CrossRefGoogle Scholar
Benzécri, J.P. (1973). l’ Analyse des données. Vol. 2. l’ Analyse des correspondances, Paris: Dunod.Google Scholar
Benzécri, J.P. (1979). Sur le calcul des taux d’inertia dans l’analyse d’un questionaire. Addendum et erratum à [BIN.MULT]. Cahiers de l’Analyse des Données, 4, 377378.Google Scholar
Bezdek, J.C. (1974). Numerical taxonomy with fuzzy sets. Journal of Mathematical Biology, 1, 5771.CrossRefGoogle Scholar
Bock, H.H. (1987). On the interface between cluster analysis, principal component analysis, and multidimensional scaling. In Bozdogan, H., & Gupta, A. K. (Eds.), Multivariate statistical modeling and data analysis (pp. 1734). New York: Reidel.CrossRefGoogle Scholar
Chang, W. (1983). On using principal components before separating a mixture of two multivariate normal distributions. Applied Statistics, 32, 267275.CrossRefGoogle Scholar
de Leeuw, J., Young, F.W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika, 41, 471503.CrossRefGoogle Scholar
DeSarbo, W.S., Howard, D.J., & Jedidi, K. (1991). MULTICLUS: A new method for simultaneous performing multidimensional scaling and clustering. Psychometrika, 56, 121136.CrossRefGoogle Scholar
DeSarbo, W.S., Jedidi, K., Cool, K., & Schendel, D. (1990). Simultaneous multidimensional unfolding and cluster analysis: An investigation of strategic groups. Marketing Letters, 2, 129146.CrossRefGoogle Scholar
De Soete, G., & Carroll, J.D.et al. (1994). k-means clustering in a low-dimensional Euclidean space. In Diday, E.et al. (Eds.), New approaches in classification and data analysis (pp. 212219). Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Dolničar, S., & Leisch, F. (2001). Behavioral market segmentation of binary guest survey data with bagged clustering. In Dorffner, G., Bischof, H., & Hornik, K. (Eds.), ICANN 2001 (pp. 111118). Berlin: Springer-Verlag.Google Scholar
Gifi, A. (1990). Nonlinear multivariate analysis, Chichester, UK: Wiley.Google Scholar
Green, P.E., Carmone, F.J., & Kim, J. (1990). A preliminary study of optimal variable weighting in k-means clustering. Journal of Classification, 7, 271285.CrossRefGoogle Scholar
Green, P.E., & Krieger, A.M. (1995). Alternative approaches to cluster-based market segmentation. Journal of the Market Research Society, 37, 221239.CrossRefGoogle Scholar
Green, P.E., & Krieger, A.M. (1998). User’s Guide to HIERMAPR. The Wharton School. University of Pennsylvania.Google Scholar
Green, P.E., Schaffer, C.M., & Patterson, K.M. (1988). A reduced-space approach to the clustering of categorical data in market segmentation. Journal of the Market Research Society, 30, 267288.Google Scholar
Greenacre, M.J. (1984). Theory and applications of correspondence analysis, London: Academic Press.Google Scholar
Heiser, W.J. (1993). Clustering in low-dimensional space. In Opitz, O., Lausen, B., & Klar, R. (Eds.), Information and classification: Concepts, methods, and applications (pp. 162173). Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Hwang, H., & Takane, Y. (2002). Generalized constrained multiple correspondence analysis. Psychometrika, 67, 211224.CrossRefGoogle Scholar
Javalgi, R., Whipple, T., McManamon, M., & Edick, V. (1992). Hospital image: A correspondence analysis approach. Journal of Health Care Marketing, 12, 3441.Google ScholarPubMed
Kamakura, W.A., Kim, B., & Lee, J. (1996). Modeling preference and structural heterogeneity in consumer choice. Marketing Science, 15, 152172.CrossRefGoogle Scholar
Kruskal, J.B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 127.CrossRefGoogle Scholar
Lebart, L. (1994). Complementary use of correspondence analysis and cluster analysis. In Greenacre, M. J., & Blasius, J. (Eds.), Correspondence Analysis in the Social Sciences (pp. 162178). London: Academic Press.Google Scholar
Lebart, L., Morineau, A., & Warwick, K.M. (1984). Multivariate descriptive statistical analysis, New York: Wiley.Google Scholar
Lloyd, S.P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28, 129137.CrossRefGoogle Scholar
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Le Cam, L.M., & Neyman, J. (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (pp. 281297). Berkeley: University of California Press.Google Scholar
Manton, K.G., Woodbury, M.A., & Tolley, H.D. (1994). Statistical applications using fuzzy sets, New York: Wiley.Google Scholar
Mucha, H.-J. (2002). An intelligent clustering technique based on dual scaling. In Nishisato, S., Baba, Y., Bozdogan, H., & Kanefuji, K. (Eds.), Measurement and multivariate analysis (pp. 3746). Tokyo: Springer-Verlag.CrossRefGoogle Scholar
Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its applications, Toronto: University of Toronto Press.CrossRefGoogle Scholar
Nishisato, S. (1984). Forced classification: A simple application of a quantitative technique. Psychometrika, 49, 2536.CrossRefGoogle Scholar
Nishisato, S. (1994). Elements of dual scaling: An introduction to practical data analysis, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Punj, G., & Stewart, D.W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20, 134148.CrossRefGoogle Scholar
Ramsay, J.O. (1988). Monotone regression splines in action (with discussion). Statistical Science, 3, 425461.Google Scholar
Ramsay, J.O. (1998). Estimating smooth monotone functions. Journal of the Royal Statistical Society Series B, 60, 365375.CrossRefGoogle Scholar
Rovan, J. (1994). Visualizing solutions in more than two dimensions. In Greenacre, M. J., & Blasius, J. (Eds.), Correspondence analysis in the social sciences (pp. 210229). London: Academic Press.Google Scholar
Steinley, D. (2003). Local optima in k-means clustering: What you don’t know may hurt you. Psychological Methods, 8, 294302.CrossRefGoogle ScholarPubMed
Van Buuren, S., & Heiser, W.J. (1989). Clustering n objects into k groups under optimal scaling of variables. Psychometrika, 54, 699706.CrossRefGoogle Scholar
Vichi, M., Kiers, H.A.L. (2001). Factorial k-means analysis for two-way data. Computational Statistics and Data Analysis, 37, 4964.CrossRefGoogle Scholar
Wedel, M., & Kamakura, W.A. (1998). Market segmentation: Conceptual and methodological foundations, Boston: Kluwer Academic.Google Scholar
Wind, Y. (1978). Issues and advances in segmentation research. Journal of Marketing Research, 15, 317337.CrossRefGoogle Scholar
Yanai, H. (1998). Generalized canonical correlation analysis with linear constraints. In Hayashi, C., Ohsumi, N., Yajima, K., Tanaka, Y., Bock, H.-H., & Baba, Y. (Eds.), Data science, classification, and related methods (pp. 539546). Tokyo: Springer-Verlag.CrossRefGoogle Scholar