Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T03:52:20.655Z Has data issue: false hasContentIssue false

An Efficient Algorithm for TUCKALS3 on Data with Large Numbers of Observation Units

Published online by Cambridge University Press:  01 January 2025

Henk A. L. Kiers*
Affiliation:
University of Groningen
Pieter M. Kroonenberg
Affiliation:
Leiden University
Jos M. F. ten Berge
Affiliation:
University of Groningen
*
Requests for reprints should be sent to Henk A. L. Kiers, Department of Psychology, Grote Kruisstraat 2/1, 9712 TS Groningen, THE NETHERLANDS.

Abstract

A modification of the TUCKALS3 algorithm is proposed that handles three-way arrays of order I × J × K for any I. When I is much larger than JK, the modified algorithm needs less work space to store the data during the iterative part of the algorithm than does the original algorithm. Because of this and the additional feature that execution speed is higher, the modified algorithm is highly suitable for use on personal computers.

Type
Original Paper
Copyright
Copyright © 1992 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research has been made possible by a fellowship from the Royal Netherlands Academy of Arts and Sciences to the first author.

References

Bentler, P. M., Lee, S.-Y. (1978). Statistical aspects of a three-mode factor analysis model. Psychometrika, 43, 343352.CrossRefGoogle Scholar
Bentler, P. M., Lee, S.-Y. (1979). A statistical development of three-mode factor analysis. British Journal of Mathematical and Statistical Psychology, 32, 87104.CrossRefGoogle Scholar
Bentler, P. M., Poon, W.-Y., Lee, S.-Y. (1988). Generalized multimode latent variable models: Implementation by standard programs. Computational Statistics and Data Analysis, 6, 107118.CrossRefGoogle Scholar
Bloxom, B. (1968). A note on invariance in three-mode factor analysis. Psychometrika, 33, 347350.CrossRefGoogle ScholarPubMed
Browne, M. W. (1984). The decomposition of multitrait-multimethod matrices. British Journal of Mathematical and Statistical Psychology, 37, 121.CrossRefGoogle ScholarPubMed
Cliff, N. (1966). Orthogonal rotation to congruence. Psychometrika, 31, 3342.CrossRefGoogle Scholar
Kiers, H. A. L., Krijnen, W. P. (1991). An efficient algorithm for PARAFAC of three-way data with large numbers of observation units. Psychometrika, 56, 147152.CrossRefGoogle Scholar
Kroonenberg, P. M. (1983). Three-mode principal component analysis, Leiden: DSWO Press.Google Scholar
Kroonenberg, P. M., de Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 45, 6997.CrossRefGoogle Scholar
Kroonenberg, P. M., ten Berge, J. M. F., Brouwer, P., Kiers, H.A.L. (1989). Gram-Schmidt versus Bauer-Rutishauser in alternating least-squares algorithms for three-mode principal component analysis. Computational Statistics Quarterly, 5, 8187.Google Scholar
Lawson, C. L., Hanson, R. J. (1974). Solving least squares problems, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Lee, S.-Y., Fong, W.-K. (1983). A scale invariant model for three-mode factor analysis. British Journal of Mathematical and Statistical Psychology, 36, 217223.CrossRefGoogle Scholar
McDonald, R. P. (1984). The invariant factors model for multimode data. In Law, H. G., Snyder, C. W., Hattie, J. A., McDonald, R. P. (Eds.), Research methods for multimode data analysis (pp. 285307). New York: Praeger.Google Scholar
Murakami, T. (1983). Quasi three-mode principal component analysis—A method for assessing the factor change. Behaviormetrika, 14, 2748.CrossRefGoogle Scholar
Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279311.CrossRefGoogle ScholarPubMed
ten Berge, J. M. F., de Leeuw, J., Kroonenberg, P. M. (1987). Some additional results on principal components analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 52, 183191.CrossRefGoogle Scholar
Verhees, J. (1989). Econometric analysis of multidimensional models. Unpublished doctoral dissertation, University of Groningen.Google Scholar
Verhees, J., Wansbeek, T. J. (1990). A multimode direct product model for covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 43, 231240.CrossRefGoogle Scholar
Weesie, H. M., & Van Houwelingen, J. C. (1983). GEPCAM users' manual: Generalized principal components analysis with missing values. Unpublished manuscript, University of Utrecht, Institute of Mathematics.Google Scholar