Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:45:53.337Z Has data issue: false hasContentIssue false

A Tabu-Search Heuristic for Deterministic Two-Mode Blockmodeling of Binary Network Matrices

Published online by Cambridge University Press:  01 January 2025

Michael Brusco*
Affiliation:
Florida State University
Douglas Steinley
Affiliation:
University of Missouri-Columbia
*
Requests for reprints should be sent to Michael Brusco, Department of Marketing, College of Business, Florida State University, Tallahassee, FL 32306-1110, USA. E-mail: mbrusco@fsu.edu

Abstract

Two-mode binary data matrices arise in a variety of social network contexts, such as the attendance or non-attendance of individuals at events, the participation or lack of participation of groups in projects, and the votes of judges on cases. A popular method for analyzing such data is two-mode blockmodeling based on structural equivalence, where the goal is to identify partitions for the row and column objects such that the clusters of the row and column objects form blocks that are either complete (all 1s) or null (all 0s) to the greatest extent possible. Multiple restarts of an object relocation heuristic that seeks to minimize the number of inconsistencies (i.e., 1s in null blocks and 0s in complete blocks) with ideal block structure is the predominant approach for tackling this problem. As an alternative, we propose a fast and effective implementation of tabu search. Computational comparisons across a set of 48 large network matrices revealed that the new tabu-search heuristic always provided objective function values that were better than those of the relocation heuristic when the two methods were constrained to the same amount of computation time.

Type
Original Paper
Copyright
Copyright © 2011 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, E., Korst, J. (1989). Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing, New York: Wiley.Google Scholar
Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P. (2008). Mixed-membership stochastic blockmodels. Journal of Machine Learning Research, 9, 19812014.Google ScholarPubMed
Arabie, P., Hubert, L., Schleutermann, S. (1990). Blockmodels from the bond energy algorithm. Social Networks, 12, 99126.CrossRefGoogle Scholar
Batagelj, V., Ferligoj, A., Doreian, P. (1992). Direct and indirect methods for structural equivalence. Social Networks, 14, 6390.CrossRefGoogle Scholar
Bickel, P.J., Chen, A. (2009). A nonparametric view of network models and Newman-Girvan and other modularities. Proceedings of the National Academy of Sciences, 106, 2106821073.CrossRefGoogle ScholarPubMed
Borgatti, S.P., Everett, M.G. (1997). Network analysis of 2-mode data. Social Networks, 19, 243269.CrossRefGoogle Scholar
Borgatti, S.P., Everett, M.G., Freeman, L. (2002). Ucinet for Windows: software for social network analysis, Harvard: Analytic Technologies.Google Scholar
Breiger, R.L., Boorman, S.A., Arabie, P. (1975). An algorithm for clustering relational data with applications to social network analysis and comparison to multidimensional scaling. Journal of Mathematical Psychology, 12, 328383.CrossRefGoogle Scholar
Brusco, M., Doreian, P., Mrvar, A., Steinley, D. (2011). Linking theory, models, and data to understand social network phenomena: two algorithms for relaxed structural balance partitioning. Sociological Methods & Research, 40, 5787.CrossRefGoogle Scholar
Brusco, M.J., Köhn, H.F. (2009). Clustering qualitative data based on binary equivalence relations: neighborhood search heuristics for the clique partitioning problem. Psychometrika, 74, 685703.CrossRefGoogle Scholar
Brusco, M.J., Stahl, S. (2001). An interactive approach to multiobjective combinatorial data analysis. Psychometrika, 66, 524.CrossRefGoogle Scholar
Brusco, M.J., Stahl, S. (2005). Optimal least-squares unidimensional scaling: improved branch-and-bound procedures and comparison to dynamic programming. Psychometrika, 70, 253270.CrossRefGoogle Scholar
Brusco, M., Steinley, D. (2006). Inducing a blockmodel structure of two-mode binary data using seriation procedures. Journal of Mathematical Psychology, 50, 468477.CrossRefGoogle Scholar
Brusco, M., Steinley, D. (2007). A variable neighborhood search method for generalized blockmodeling of two-mode binary matrices. Journal of Mathematical Psychology, 51, 325338.CrossRefGoogle Scholar
Brusco, M.J., Steinley, D. (2007). A comparison of heuristic procedures for minimum within-cluster sums of squares partitioning. Psychometrika, 72, 583600.CrossRefGoogle Scholar
Brusco, M.J., Steinley, D. (2009). Integer programs for one- and two-mode blockmodeling based on prespecified image matrices for structural and regular equivalence. Journal of Mathematical Psychology, 53, 577585.CrossRefGoogle ScholarPubMed
Brusco, M., Steinley, D. (2010). K-balance partitioning: an exact method with application to generalized structural balance and other psychological contexts. Psychological Methods, 15, 145157.CrossRefGoogle ScholarPubMed
Charon, I., Hudry, O. (2006). Noising methods for a clique partitioning problem. Discrete Applied Mathematics, 154, 754769.CrossRefGoogle Scholar
Clapham, C. (1996). The concise Oxford dictionary of mathematics, (2nd ed.). Oxford: Oxford University Press.Google Scholar
Davis, A., Gardner, B., Gardner, M.R. (1941). Deep south, Chicago: University of Chicago Press.Google Scholar
De Amorim, S.G., Barthélemy, J.-P., Ribeiro, C.C. (1992). Clustering and clique partitioning: simulated annealing and tabu search approaches. Journal of Classification, 9, 1741.CrossRefGoogle Scholar
Doreian, P., Batagelj, V., Ferligoj, A. (2004). Generalized blockmodeling of two-mode network data. Social Networks, 26, 2953.CrossRefGoogle Scholar
Doreian, P., Batagelj, V., Ferligoj, A. (2005). Generalized blockmodeling, Cambridge: Cambridge University Press.Google Scholar
Doreian, P., Mrvar, A. (1996). A partitioning approach to structural balance. Social Networks, 18, 149168.CrossRefGoogle Scholar
Doreian, P., Mrvar, A. (2009). Partitioning signed social networks. Social Networks, 31, 111.CrossRefGoogle Scholar
Fienberg, S.E., Meyer, M.M., Wasserman, S.S. (1985). Statistical analysis of multiple sociometric relations. Journal of the American Statistical Association, 80, 5167.CrossRefGoogle Scholar
Freeman, L.C. (2003). Finding social groups: a meta-analysis of the Southern Women data. In Brieger, R., Carley, C., Pattison, P. (Eds.), Dynamic social network modeling and analysis: workshop summary and papers (pp. 3997). Washington: The National Academies Press.Google Scholar
Glover, F., Laguna, M. (1993). Tabu search. In Reeves, C. (Eds.), Modern heuristic techniques for combinatorial problems (pp. 70141). Oxford: Blackwell.Google Scholar
Goldberg, D.E. (1989). Genetic algorithms in search, optimization, and machine learning, New York: Addison-Wesley.Google Scholar
Goldenberg, A., Zheng, A., Fienberg, S.E., Airoldi, E.M. (2009). A survey of statistical network models. Foundations and Trends in Machine Learning, 2, 1117.CrossRefGoogle Scholar
Govaert, G., Nadif, M. (2003). Clustering with block mixture models. Pattern Recognition, 36, 463473.CrossRefGoogle Scholar
Groenen, P.J.F., Heiser, W.J. (1996). The tunneling method for global optimization in multidimensional scaling. Psychometrika, 61, 529550.CrossRefGoogle Scholar
Hand, D.J. (1981). Discrimination and classification, New York: Wiley.Google Scholar
Handcock, M.S., Raftery, A.E., Tantrum, J. (2007). Model-based clustering for social networks (with discussion). Journal of the Royal Statistical Society A, 170, 301354.CrossRefGoogle Scholar
Hartigan, J. (1972). Direct clustering of a data matrix. Journal of the American Statistical Association, 67, 123129.CrossRefGoogle Scholar
Heller, J. (1961). Catch-22: a novel, New York: Simon and Schuster.Google Scholar
Holland, P.W., Leinhardt, S. (1976). Local structure in social networks. Sociological Methodology, 7, 145.CrossRefGoogle Scholar
Holland, P.W., Leinhardt, S. (1977). A dynamic model for social networks. Journal of Mathematical Sociology, 5, 520.CrossRefGoogle Scholar
Holland, P.W., Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs (with discussion). Journal of the American Statistical Association, 76, 3365.CrossRefGoogle Scholar
Holland, P.W., Laskey, K.B., Leinhardt, S. (1983). Stochastic blockmodels: first steps. Social Networks, 5, 109137.CrossRefGoogle Scholar
Homans, G.C. (1950). The human group, New York: Harcourt-Brace.Google Scholar
Kaiser, S., & Leisch, F. (2008). A toolbox for bicluster analysis in R (Technical Report 028). Munich: Department of Statistics, University of Munich.Google Scholar
Koyutürk, M., Szpanowski, W., Grama, A. (2004). Biclustering gene-feature matrices for statistically significant patterns. Proceedings of the 2004 IEEE computational systems bioinformatics conference (pp. 480484). Washington: IEEE Comput. Soc.Google Scholar
Krolak-Schwerdt, S. (2003). Two-mode clustering methods: compare and contrast. In Schader, M., Gaul, W., Vichi, M. (Eds.), Between data science and applied data analysis (pp. 270278). Berlin: Springer.CrossRefGoogle Scholar
Lauritzen, S.L. (2008). Exchangeable Rasch matrices. Rendiconti di Matematica, 28, 8395.Google Scholar
Lorrain, F., White, H.C. (1971). Structural equivalence of individuals in social networks. Journal of Mathematical Sociology, 1, 4980.CrossRefGoogle Scholar
Madeira, S.C., Oliveira, A.L. (2004). Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Informatics, 1, 2445.Google ScholarPubMed
McLachlan, G.J. (2011). Commentary on Steinley and Brusco (2011): recommendations and cautions. Psychological Methods, 16, 8081.CrossRefGoogle ScholarPubMed
Mische, A., Pattison, P. (2000). Composing a civic arena: publics, projects, and social settings. Poetics, 27, 163194.CrossRefGoogle Scholar
Mladenović, N., Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24, 10971100.CrossRefGoogle Scholar
Mrvar, A., Doreian, P. (2009). Partitioning signed two-mode networks. Journal of Mathematical Sociology, 33, 196221.CrossRefGoogle Scholar
Mulvey, J.M., Crowder, H.P. (1979). Cluster analysis: an application of Lagrangian relaxation. Management Science, 25, 329340.CrossRefGoogle Scholar
Newman, M.E.J., Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69.Google ScholarPubMed
Nowicki, K., Snijders, T.A.B. (2001). Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96, 10771087.CrossRefGoogle Scholar
Pacheco, J., Valencia, O. (2003). Design of hybrids for the minimum sum-of-squares clustering problem. Computational Statistics and Data Analysis, 43, 235248.CrossRefGoogle Scholar
Pattison, P.E., Breiger, R.L. (2002). Lattices and dimensional representations: matrix decompositions and ordering structures. Social Networks, 24, 423444.CrossRefGoogle Scholar
Prelić, A., Blueler, S., Zimmerman, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E. (2006). A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 22, 11221129.CrossRefGoogle ScholarPubMed
Rolland, E., Schilling, D.A., Current, J.R. (1996). An efficient tabu search procedure for the p-median problem. European Journal of Operational Research, 96, 329342.CrossRefGoogle Scholar
Steinhaus, H. (1956).Sur la division des corps matétiels en parties. Bulletin de l’Académie Polonaise des Sciences, Classe III, IV(12), 801804.Google Scholar
Steinley, D., Brusco, M.J. (2011). An evaluation of mixture model clustering: recommendations and cautions. Psychological Methods, 16, 6379.CrossRefGoogle ScholarPubMed
Steinley, D., Brusco, M.J. (2011). K-means clustering and mixture model clustering: reply to McLachlan and Vermunt. Psychological Methods, 16, 8992.CrossRefGoogle Scholar
van Rosmalen, J., Groenen, P.J.F., Trejos, P., Castillo, W. (2009). Optimization strategies for two-mode partitioning. Journal of Classification, 26, 155181.CrossRefGoogle Scholar
van Uitert, M., Meuleman, W., Wessels, L. (2008). Biclustering sparse binary genomic data. Journal of Computational Biology, 15, 13291345.CrossRefGoogle ScholarPubMed
Vermunt, J. (2011). K-means may perform as well as mixture model clustering but may also be much worse: comment on Steinley and Brusco (2011). Psychological Methods, 16, 8288.CrossRefGoogle ScholarPubMed
von Luxburg, U. (2007). A tutorial on spectral clustering. Statistical Computing, 17, 395416.CrossRefGoogle Scholar
Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236244.CrossRefGoogle Scholar
Wasserman, S., Faust, K. (1994). Social network analysis: methods and applications, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
White, D.R., Reitz, K.P. (1983). Graph and semigroup homomorphisms on networks of relations. Social Networks, 5, 193234.CrossRefGoogle Scholar
Xu, W., Liu, X., Gong, Y. (2003). Document clustering based on non-negative matrix factorization. SIGIR‘03: proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval (pp. 267273). New York: Association for Computing Machinery.CrossRefGoogle Scholar
Žiberna, A. (2007). Generalized blockmodeling of valued networks. Social Networks, 29, 105126.CrossRefGoogle Scholar