Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T13:07:14.199Z Has data issue: false hasContentIssue false

Saddlepoint Approximations of the Distribution of the Person Parameter in the Two Parameter Logistic Model

Published online by Cambridge University Press:  01 January 2025

Martin Biehler*
Affiliation:
Westfälische Wilhelms-Universität Münster
Heinz Holling
Affiliation:
Westfälische Wilhelms-Universität Münster
Philipp Doebler
Affiliation:
Westfälische Wilhelms-Universität Münster
*
Requests for reprints should be sent to Martin Biehler, Westfälische Wilhelms-Universität Münster, Münster, Germany. E-mail: Martin.A.Biehler@uni-giessen.de

Abstract

Large sample theory states the asymptotic normality of the maximum likelihood estimator of the person parameter in the two parameter logistic (2PL) model. In short tests, however, the assumption of normality can be grossly wrong. As a consequence, intended coverage rates may be exceeded and confidence intervals are revealed to be overly conservative. Methods belonging to the higher-order-theory, more specifically saddlepoint approximations, are a convenient way to deal with small-sample problems. Confidence bounds obtained by these means hold the approximate confidence level for a broad range of the person parameter. Moreover, an approximation to the exact distribution permits to compute median unbiased estimates (MUE) that are as likely to overestimate as to underestimate the true person parameter. Additionally, in small samples, these MUE are less mean-biased than the often-used maximum likelihood estimator.

Type
Original Paper
Copyright
Copyright © 2014 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic Supplementary Material The online version of this article (doi:10.1007/s11336-014-9405-1) contains supplementary material, which is available to authorized users.

References

Agresti, A. (2001). Exact inference for categorical data: recent advances and continuing controversies. Statistics in Medicine, 20, 27092722.CrossRefGoogle ScholarPubMed
Agresti, A. (2002). Categorical data analysis (2nd ed.). Hoboken: Wiley.CrossRefGoogle Scholar
Agresti, A., & Gottard, A. (2007). Nonconservative exact small-sample inference for discrete data. Computational Statistics & Data Analysis, 51, 64476458.CrossRefGoogle Scholar
Agresti, A., & Min, Y. (2001). On small-sample confidence intervals for parameters in discrete distributions. Biometrics, 57, 963971.CrossRefGoogle ScholarPubMed
Aït-Sahalia, Y., & Yu, J. (2006). Saddlepoint approximations for continuous-time Markov processes. Journal of Econometrics, 134, 507551.CrossRefGoogle Scholar
Baker, F.B., & Kim, S.H. (2004). Item response theory: parameter estimation techniques (2nd ed.). New York: CRC Press.CrossRefGoogle Scholar
Barndorff-Nielsen, O. (1986). Inference on full or partial parameters on the standardized signed log likelihood ratio. Biometrika, 73(2), 307322.Google Scholar
Bedrick, E.J. (1997). Approximating the conditional distribution of person fit indexes for checking the Rasch model. Psychometrika, 62(2), 191199.CrossRefGoogle Scholar
Bedrick, E.J., & Hill, J.R. (1992). An empirical assessment of saddlepoint approximations for testing a logistic regression parameter. Biometrics, 48(2), 529544.CrossRefGoogle ScholarPubMed
Birnbaum, A. (1964). Median-unbiased estimators. Bulletin of Mathematical Statistics, 11, 2534.CrossRefGoogle Scholar
Borsboom, D. (2006). The attack of the psychometricians. Psychometrika, 71(3), 425440.CrossRefGoogle ScholarPubMed
Brazzale, A.R. (1999). Approximate conditional inference in logistic and loglinear models. Journal of Computational and Graphical Statistics, 8(3), 653661.CrossRefGoogle Scholar
Brazzale, A.R., (2000). Practical small-sample parametric inference. Unpublished doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne, Switzerland.Google Scholar
Brazzale, A.R. (2005). Hoa: An R package bundle for higher order likelihood inference. Rnews, 5(1), 2027. (ISSN 609-3631).Google Scholar
Brazzale, A.R., & Davison, A.C. (2008). Accurate parametric inference for small samples. Statistical Science, 23(4), 465484.CrossRefGoogle Scholar
Brazzale, A.R., Davison, A.C., & Reid, N. (2007). Applied asymptotics: case studies in small-sample statistics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Brown, G.W. (1947). On small-sample estimation. The Annals of Mathematical Statistics, 18(4), 582585.CrossRefGoogle Scholar
Butler, R.W. (2000). Reliabilities for feedback systems and their saddlepoint approximation. Statistical Science, 15(3), 279298.CrossRefGoogle Scholar
Butler, R.W. (2007). Saddlepoint approximations with applications. New York: Cambridge University Press.CrossRefGoogle Scholar
Casella, G., & Berger, R. (2002). Statistical inference. Pacific Grove: Duxbury/Thomson Learning.Google Scholar
Chieffo, A., Stankovic, G., Bonizzoni, E., Tsagalou, E., Iakovou, I., & Montorfano, M. et al. (2005). Early and mid-term results of drug-eluting stent implantation in unprotected left main. Circulation, 111, 791795.CrossRefGoogle ScholarPubMed
Cox, D. (2006). Principles of statistical inference. New York: Cambridge University Press.CrossRefGoogle Scholar
Davison, A.C. (2003). Statistical models. New York: Cambridge University Press.CrossRefGoogle Scholar
Davison, A.C. (1988). Approximate conditional inference in generalized linear models. Journal of the Royal Statistical Society Series B (Methodological), 50(3), 445461.CrossRefGoogle Scholar
Davison, A.C., Fraser, D., & Reid, N. (2006). Improved likelihood inference for discrete data. Journal of the Royal Statistical Society Series B, 68 Part 3495508.CrossRefGoogle Scholar
DeMars, C. (2010). Item response theory. New York: Oxford University Press.CrossRefGoogle Scholar
Doebler, A., Doebler, P., & Holling, H. (2013). Optimal and most exact confidence intervals for person parameters in item response theory models. Psychometrika, 78(1), 98115.CrossRefGoogle ScholarPubMed
Essen, C.-G. (1945). Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law. Acta Mathematica, 77(1), 1125.CrossRefGoogle Scholar
Fischer, G.H. (2007). Rasch models. In Rao, C., & Sinharay, S. (Eds.), Psychometrics (pp. 515585). Amsterdam: North-Holland.Google Scholar
Fox, J.-P. (2010). Bayesian item response modeling. New York: Springer.CrossRefGoogle Scholar
Hall, P. (1982). Improving the normal approximation when constructing one-sided confidence intervals for binomial or Poisson parameters. Biometrika, 69(3), 647652.CrossRefGoogle Scholar
Hall, P. (1992). On the removal of skewness by transformation. Journal of the Royal Statistical Society, Series B (Methodological), 54(1), 221228.CrossRefGoogle Scholar
Hambleton, R.K., & Zhao, Y. (2005). Item response theory (IRT) models for dichotomous data. In Everitt, B., & Howell, D. (Eds.), Encyclopedia of statistics in behavioral science (pp. 982990). Chichester: Wiley.Google Scholar
Hirji, K.F. (2006). Exact analysis of discrete data. Boca Raton: Chapman & Hall/CRC Press.Google Scholar
Hirji, K.F., Tsiatis, A.A., & Metha, C.R. (1989). Median unbiased estimation for binary data. American Statistician, 43(1), 711.CrossRefGoogle Scholar
Hoijtink, H., & Boomsma, A. (1995). On person parameter estimation in the dichotomous Rasch model. In Fischer, G.H., & Molenaar, I.W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 5468). New York: Springer.Google Scholar
Johnson, N.L., Kemp, A.W., & Kotz, S. (2005). Univariate discrete distributions (3rd ed.). Hoboken: Wiley.CrossRefGoogle Scholar
Kay, S., Nuttall, A., & Baggenstoss, P. (2001). Multidimensional probability density function approximations for detection, classification, and model order selection. IEEE Transactions on Signal Processing, 49(10), 22402252.CrossRefGoogle Scholar
Klauer, K.C. (1991). Exact and best confidence intervals for the ability parameter of the Rasch model. Psychometrika, 56(2), 535547.CrossRefGoogle Scholar
Klauer, K.C. (1991). An exact and optimal standardized person test for assessing consistency with the Rasch model. Psychometrika, 56(2), 213228.CrossRefGoogle Scholar
Kolassa, J. (1997). Infinite parameter estimates in logistic regression, with application to approximate conditional inference. Scandinavian Journal of Statistics, 24(4), 523530.CrossRefGoogle Scholar
Lehmann, E. (1951). A general concept of unbiasedness. The Annals of Mathematical Statistics, 22(4), 587592.CrossRefGoogle Scholar
Lehmann, E. (1999). Elements of large sample theory (1st ed.). New York: Springer.CrossRefGoogle Scholar
Lehmann, E., & Casella, G. (1998). Theory of point estimation (2nd ed.). New York: Springer. Hardcover.Google Scholar
Lehmann, E., & Romano, J. (2005). Testing statistical hypotheses (3rd ed.). New York: Springer.Google Scholar
Levin, B. (1990). The saddlepoint correction in conditional logistic likelihood analysis. Biometrika, 77(2), 275285.CrossRefGoogle Scholar
Liou, M., & Yu, L.-C. (1991). Assessing statistical accuracy in ability estimation: a bootstrap approach. Psychometrika, 56(1), 5567.CrossRefGoogle Scholar
Lord, F.M. (1983). Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability. Psychometrika, 48(2), 233245.CrossRefGoogle Scholar
Lugannani, R., & Rice, S. (1980). Saddle point approximation for the distribution of the sum of independent random variables. Advances in Applied Probability, 12(2), 475490.CrossRefGoogle Scholar
Molenaar, I., & Hoijtink, H. (1990). The many null distributions of person fit indices. Psychometrika, 55(1), 75106.CrossRefGoogle Scholar
Ogasawara, H. (2012). Asymptotic expansions for the ability estimator in item response theory. Computational Statistics, 27(4), 661683.CrossRefGoogle Scholar
Ogasawara, H. (2013). Asymptotic properties of the bayes and pseudo bayes estimators of ability in item response theory. Journal of Multivariate Analysis, 114, 359377.CrossRefGoogle Scholar
Pace, L., & Salvan, A. (1997). Principles of statistical inference from a neo-Fisherian perspective. Singapore: World Scientific.CrossRefGoogle Scholar
Pace, L., & Salvan, A. (1999). Point estimation based on confidence intervals: exponential families. Journal of Statistical Computation and Simulation, 64, 121.CrossRefGoogle Scholar
Pfanzagl, J. (1970). Median unbiased estimates for m.l.r.-families. Metrika, 15(1), 3039.CrossRefGoogle Scholar
Pfanzagl, J. (1970). On the asymptotic efficiency of median unbiased estimates. The Annals of Mathematical Statistics, 41(5), 15001509.CrossRefGoogle Scholar
Pfanzagl, J. (1972). On median unbiased estimates. Metrika, 18(1), 154173.CrossRefGoogle Scholar
Pierce, D.A., & Peters, D. (1992). Practical use of higher order asymptotics for multiparameter exponential families. Journal of the Royal Statistical Society Series B, 54(3), 701737.CrossRefGoogle Scholar
R Development Core Team (2009). R: A language and environment for statistical computing [Computer software manual], Vienna, Austria. Available from http://www.R-project.org. (ISBN 3-900051-07-0).Google Scholar
Read, C.B. (2006). Median unbiased estimators. In Kotz, S., Norman, L.J., Balakrishnan, N., Read, C.B., & Brani, V. (Eds.), Encyclopedia of statistical sciences, (2nd ed., pp. 47134715). New York: Wiley-Interscience.Google Scholar
Reeve, B., & Mâsse, L. et al. (2004). Item response theory modeling for questionnaire evaluation. In Presser, S. et al. Methods for testing and evaluating survey questionnaires (pp. 247273). Hoboken: Wiley.CrossRefGoogle Scholar
Reid, N. (1988). Saddlepoint methods and statistical inference. Statistical Science, 3(2), 213238.Google Scholar
Rogers, L., & Zane, O. (1999). Saddlepoint approximations to option prices. The Annals of Applied Probability, 9(2), 493503.CrossRefGoogle Scholar
Routledge, R. (1994). Practicing safe statistics with the mid-p . Canadian Journal of Statistics, 22(1), 103110.CrossRefGoogle Scholar
Salvan, A., & Hirji, K. (1991). Asymptotic equivalence of conditional median unbiased and maximum likelihood estimators in exponential families. Metron, 49, 219232.Google Scholar
Severini, T.A. (2000). Likelihood methods in statistic. New York: Oxford University Press.CrossRefGoogle Scholar
Small, C.G. (2010). Expansions and asymptotics for statistics. Boca Raton: Chapman & Hall/CRC Press.CrossRefGoogle Scholar
Srivastava, M., & Yau, W. (1989). Saddlepoint method for obtaining tail probability of Wilks’ likelihood ratio test. Journal of Multivariate Analysis, 31, 117126.CrossRefGoogle Scholar
Stuart, A., & Ord, J. (1987). Kendall’s advanced theory of statistics (5th ed.). New York: Oxford University Press.Google Scholar
van der Linden, W.J., & Glas, G.A.W. (Eds.) (2000). Computerized adaptive testing: theory and practice. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Wang, S., & Carroll, R.J. (1999). High-order accurate methods for retrospective sampling problems. Biometrika, 86(4), 881897.CrossRefGoogle Scholar
Warm, T.A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54(3), 427450.CrossRefGoogle Scholar
Young, G., & Smith, R. (2005). Essentials of statistical inference. New York: Cambridge University Press.CrossRefGoogle Scholar
Supplementary material: File

Biehler et al. supplementary material

Appendix C: R-code
Download Biehler et al. supplementary material(File)
File 124 KB