Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T03:05:16.035Z Has data issue: false hasContentIssue false

On Fair Person Classification Based on Efficient Factor Score Estimates in the Multidimensional Factor Analysis Model

Published online by Cambridge University Press:  01 January 2025

Pascal Jordan*
Affiliation:
University of Hamburg
Martin Spiess
Affiliation:
University of Hamburg
*
Correspondence should be made to Pascal Jordan, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg,Germany. Email: pascal.jordan@uni-hamburg.de

Abstract

Since Hooker, Finkelman and Schwartzman (Psychometrika 74(3): 419–442, 2009) it is known that person parameter estimates from multidimensional latent variable models can induce unfair classifications via paradoxical scoring effects. The open question as to whether there is a fair and at the same time multidimensional scoring scheme with adequate statistical properties is addressed in this paper. We develop a theorem on the existence of a fair, multidimensional classification scheme in the context of the classical linear factor analysis model and show how the computation of the scoring scheme can be embedded in the context of linear programming. The procedure is illustrated in the framework of scoring the Wechsler Adult Intelligence Scale (WAIS-IV).

Type
Original Paper
Copyright
Copyright © The Psychometric Society 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11336-018-9613-1) contains supplementary material, which is available to authorized users.

References

Bartholomew, D. J. (1996). Comment on: Metaphor taken as math: Indeterminacy in the factor analysis model.Multivariate Behavioral Research, 31 4551554.CrossRefGoogle Scholar
Canivez, G. L., &Watkins, M. W. (2010). Investigation of the factor structure of the Wechsler Adult Intelligence Scale Fourth Edition (WAIS-IV): Exploratory and higher order factor analyses.Psychological Assessment, 22 4,827836.CrossRefGoogle ScholarPubMed
Ellis, J. L., &Junker, B. W. (1997). Tail-measurability in monotone latent variable models.Psychometrika, 62 4,495523.CrossRefGoogle Scholar
Finkelman, M. D.,Hooker, G., &Wang, Z. (2010). Prevalence and magnitude of paradoxical results in multidimensional item response theory.Journal of Educational and Behavioral Statistics, 35 6,744761.CrossRefGoogle Scholar
Gignac, G. E., &Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS-IV.Multivariate Behavioral Research, 48 5,639662.CrossRefGoogle ScholarPubMed
Guttman, L. (1955). The determinacy of factor score matrices with implications for five other basic problems of common? Factor theory.British Journal of Mathematical and Statistical Psychology, 8 2,6581.CrossRefGoogle Scholar
Hampel, P., &Petermann, F. (2006). Fragebogen zum Screening psychischer Störungen im Jugendalter (SPS-J).Zeitschrift für Klinische Psychologie und Psychotherapie, 35 3,204214.CrossRefGoogle Scholar
Holland, P. W. (1994). Measurements or contests? Comments on Zwick, Bond and Allen/Donoghue. In Proceedings of the social statistics section of the American Statistical Association (pp. 27–29). Alexandria, VA: American Statistical Association.Google Scholar
Hooker, G.,Finkelman, M., &Schwartzman, A. (2009). Paradoxical results in multidimensional item response theory.Psychometrika, 74 3,419442.CrossRefGoogle Scholar
Hooker, G. (2010). On separable tests, correlated priors, and paradoxical results in multidimensional item response theory.Psychometrika, 75 4,694707.CrossRefGoogle Scholar
Hooker, G., &Finkelman, M. (2010). Paradoxical results and item bundles.Psychometrika, 75 2,249271.CrossRefGoogle Scholar
Jordan, P., & Spiess, M. (2017). Psychometrika. https://doi.org/10.1007/s11336-017-9588-3.CrossRefGoogle Scholar
Jordan, P., &Spiess, M. (2012). Generalizations of paradoxical results in multidimensional item response theory.Psychometrika, 77 127152.CrossRefGoogle Scholar
Krijnen, W. P.,Dijkstra, T. K., &Gill, R. D. (1998). Conditions for factor (in) determinacy in factor analysis.Psychometrika, 63 4,359367.CrossRefGoogle Scholar
Lax, P. D. (2007). Linear algebra and its applications.2Hoboken, NJ:Wiley.Google Scholar
Lee, S. Y. (2007). Structural equation modeling: A Bayesian approach.1Hoboken:Wiley.CrossRefGoogle Scholar
Maraun, M. D. (1996). Metaphor taken as math: Indeterminacy in the factor analysis model.Multivariate Behavioral Research, 31 4,517538.CrossRefGoogle Scholar
Mardia, K. V., Kent, J. T., &Bibby, J. M. (1979). Multivariate analysis.London:Academic Press.Google Scholar
McDonald, R. P. (1996). Latent traits and the possibility of motion.Multivariate Behavioral Research, 31 4,593601.CrossRefGoogle ScholarPubMed
Mulaik, S. A. (1996). On Maraun’s deconstructing of factor indeterminancy with constructed factors.Multivariate Behavioral Research, 31 4,579592.CrossRefGoogle ScholarPubMed
Mulaik, S. A. (1994). Kant, Wittgenstein, objectivity, and structural equations modeling.Reynolds, C. R. Advances in cognitive assessment: An interdisciplinary approach.209236.New York:Plenum.CrossRefGoogle Scholar
Nesterov, Y.Nemirovskii, A. (1994). Interior-point polynomial algorithms in convex programming.Philadelphia:SIAM.CrossRefGoogle Scholar
R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 25 Sept 2017.Google Scholar
Reckase, M. (2009). Multidimensional item response theory.New York:Springer.CrossRefGoogle Scholar
Reckase, M. D., &Luo, X. (2015). A paradox by another name is good estimation.Milsap, R. E.,Bolt, D. M.,van der Ark, A., &Wang, W. C. Quantitative psychology research: The 78th annual meeting of the psychometric society, 465486.New York:Springer.CrossRefGoogle Scholar
Rockafellar, R. T. (1970). Convex analysis.Princeton, NJ:Princeton University Press.CrossRefGoogle Scholar
Rockafellar, R. T., &Wets, R. J. B. (2009). Variational analysis.317Berlin:Springer.Google Scholar
Searle, S. R.,Casella, G., &McCulloch, C. E. (2006). Variance components.New York:Wiley.Google Scholar
Segall, D. O. (2000). Principles of multidimensional adaptive testing.van der Linden, W. J., &Glas, C. A. W. Computerized adaptive testing: Theory and practice, Dordrecht:Kluwer Academic.2752.Google Scholar
Soetaert, K., Van den Meersche, K., & van Oevele, D. (2009). limSolve: Solving linear inverse models. R-package version 1.5.1.Google Scholar
Steiger, J. H. (1979). Factor indeterminacy in the 1930’s and the 1970’s some interesting parallels.Psychometrika, 44 2,157167.CrossRefGoogle Scholar
van der Linden, W. J. (2012). On compensation in multidimensional response modeling.Psychometrika, 77 1,2130.CrossRefGoogle Scholar
van Rijn, P. W., &Rijmen, F. (2012). A note on explaining away and paradoxical results in multidimensional item response theory (ETS No. RR-12-13).Princeton, NJ:Educational Testing Service.Google Scholar
van Rijn, P., &Rijmen, F. (2015). On the explaining-away phenomenon in multivariate latent variable models.British Journal of Mathematical and Statistical Psychology, 68 1,122.CrossRefGoogle ScholarPubMed
Ward, L. C.,Bergman, M. A., &Hebert, K. R. (2012). WAIS-IV subtest covariance structure: Conceptual and statistical considerations.Psychological Assessment, 24 2,328340.CrossRefGoogle ScholarPubMed
Wechsler, D. (2008). Wechsler Adult Intelligence Scale: Technical and interpretive manual.4San Antonio, TX:Pearson.Google Scholar
Wilson, E. B. (1928). Review of professor Spearman’s “the abilities of man”.Science, 67 244248.CrossRefGoogle Scholar
Supplementary material: File

Jordan et al. supplementary material

Jordan et al. supplementary material
Download Jordan et al. supplementary material(File)
File 2.9 KB