Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T13:36:48.588Z Has data issue: false hasContentIssue false

Nonparametric IRT: Testing the Bi-isotonicity of Isotonic Probabilistic Models (ISOP)

Published online by Cambridge University Press:  01 January 2025

Hartmann Scheiblechner*
Affiliation:
Philipps-Universität Marburg
*
Requests for reprints should be sent to Hartmann Scheiblechner, FB 04 Universitfit, Marburg, Gutenbergstrae 18, D-35032 Marburg, GERMANY. E-Mail: scheible@mailer.uni-marburg.de

Abstract

Nonparametric tests for testing the validity of polytomous ISOP-models (unidimensional ordinal probabilistic polytomous IRT-models) are presented. Since the ISOP-model is a very general nonparametric unidimensional rating scale model the test statistics apply to a great multitude of latent trait models. A test for the comonotonicity of item sets of two or more items is suggested. Procedures for testing the comonotonicity of two item sets and for item selection are developed. The tests are based on Goodman-Kruskal's gamma index of ordinal association and are generalizations thereof. It is an essential advantage of polytomous ISOP-models within probabilistic IRT-models that the tests of validity of the model can be performed before and without the model being fitted to the data. The new test statistics have the further advantage that no prior order of items or subjects needs to be known.

Type
Articles
Copyright
Copyright © 2003 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561573CrossRefGoogle Scholar
Andrich, D. (1978). Application of a psychometric rating model to ordered categories which are scored with successive integers. Applied Psychological Measurement, 2, 581594CrossRefGoogle Scholar
Christodoulides, P. (1993). Individuelle politische Profile auf Zypern und der Einfluß der politischen Propaganda auf die politische Ideologie [Individual political profiles in Cyprus and the influence of political propaganda on political ideology], Vienna, Austria: University of ViennaGoogle Scholar
Dabrowska, D., Pleszczynska, E., Szczesny, (1981). Remarks on multivariate analogues of Kendall's tau. Communications in Statistics—Theory and Methods, 10(23), 24352445CrossRefGoogle Scholar
Fischer, G.H., Ponocny-Seliger, E. (1998). Structural Rasch modeling. Handbook of the usage of LPCM-WIN 1.0. Groningen: ProGAMMAGoogle Scholar
Gans, L.P., Robertson, C.A. (1981). Distributions of Goodman and Kruskal's gamma and Spearman's rho in 2 × 2 tables for small and moderate sample sizes. Journal of the American Statistical Association, 76, 942946Google Scholar
Goodman, L.A., Kruskal, W.H. (1954). Measures of association for cross classifications, Part I. Journal of the American Statistical Association, 49, 732764Google Scholar
Goodman, L.A., Kruskal, W.H. (1959). Measures of association for cross classifications, Part II. Journal of the American Statistical Association, 54, 123163CrossRefGoogle Scholar
Goodman, L.A., Kruskal, W.H. (1963). Measures of association for cross classifications, Part III. Journal of the American Statistical Association, 58, 310364CrossRefGoogle Scholar
Goodman, L.A., Kruskal, W.H. (1972). Measures of association for cross classifications, Part IV. Journal of the American Statistical Association, 67, 415421CrossRefGoogle Scholar
Guttman, L. (1986). Coefficients of polytonicity and monotonicity. In Kotz, S., Johnson, N.L. (Eds.), Encyclopedia of statistical sciences (pp. 8087). New York, NY: WileyGoogle Scholar
Hemker, B.T. (1996). Unidimensional IRT models for polytomous items, with results for Mokken scale analysis. Utrecht Netherlands: Universiteit UtrechtGoogle Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., Junker, B.W. (1996). Polytomous IRT models and monotone likelihood ratio of the total score. Psychometrika, 61, 679693CrossRefGoogle Scholar
Hemker, B.T., Sijtsma, K., Molenaar, I.W., Junker, B.W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331347CrossRefGoogle Scholar
Irtel, H. (1987). On specific objectivity as a concept in measurement. In Roskam, E.E., Suck, R. (Eds.), Progress in mathematical psychology (pp. 3545). Amsterdam North-Holland: ElsevierGoogle Scholar
Irtel, H. (1995). An extension of the concept of specific objectivity. Psychometrika, 60, 115118CrossRefGoogle Scholar
Irtel, H., Schmalhofer, F. (1982).Psychodiagnostik auf Ordinalskalenniveau: Meßtheoretische Grundlagen, Modelltest und Parameterschätzung [Psychodiagnostics at the level of ordinal scales: Measurement theoretical foundation, model controls and parameter estimation]. Archiv für Psychologie, 134, 197218Google Scholar
Joe, H. (2001). Majorization and stochastic orders. In Marley, A.A.J. (Eds.), International encyclopedia of the social & behavioral sciences: Mathematics and computer sciences. Oxford, U.K.: Elsevier ScienceGoogle Scholar
Junker, B.W. (1993). Conditional association, essential independence and monotone unidimensional item response models. Annals of Statistics, 21, 13591378CrossRefGoogle Scholar
Junker, B.W. (1998). Some remarks on Scheiblechner's treatment of ISOP models. Psychometrika, 63, 7385CrossRefGoogle Scholar
Junker, B.W., Ellis, J.L. (1997). A characterization of monotone unidimensional latent variable models. Annals of Statistics, 25, 13271343CrossRefGoogle Scholar
Mielke, P.W. Jr. (1983). Goodman-Kruskal tau and gamma. In Kotz, S., Johnson, N.L. (Eds.), Encyclopedia of statistical sciences (pp. 446449). New York, NY: WileyGoogle Scholar
Mokken, R.J. (1971). A theory and procedure of scale analysis. Paris/Den Haag: MoutonCrossRefGoogle Scholar
Mokken, R.J., Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417430CrossRefGoogle Scholar
Molenaar, I.W. (1991). A weighted Loevinger H-coefficient extending Mokken scaling to multicategory items. Kwantitatieve Methoden, 37, 97117Google Scholar
Molenaar, I.W. (1997). Nonparametric models for polytomous responses. In van der Linden, W.J., Hambleton, R.K. (Eds.), Handbook of modern item response theory (pp. 369380). New York, NY: SpringerCrossRefGoogle Scholar
Nandakumar, R., Feng, Yu, Hsin-Hung, Li, Stout, W. (1998). Assessing Unidimensionality of Polytomous Data. Applied Psychological Measurement, 22, 99115CrossRefGoogle Scholar
Rasch, G. (1977). On specific objectivity: An attempt at formalizing the request for generality and validity of scientific statements. In Blegvad, M. (Eds.), The Danish yearbook of philosophy, 14 (pp. 5894). Copenhagen: MunksgaardGoogle Scholar
Robertson, T., Wright, F.T., Dykstra, R.L. (1988). Order restricted statistical inference. New York, NY: John WileyGoogle Scholar
Roskam, E.E. (1995). Graded responses and joining categories: A rejoinder to Andrich's “Models for measurement, precision, and the nondichotomization of graded responses”. Psychometrika, 60, 2735CrossRefGoogle Scholar
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281304CrossRefGoogle Scholar
Scheiblechner, H. (1998). Corrections of theorems in Scheiblechner's treatment of ISOP models and comments on Junker's remarks. Psychometrika, 63, 8791CrossRefGoogle Scholar
Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64, 295316CrossRefGoogle Scholar
Shaked, M., Shantikumar, J. G. (1994). Stochastic orders and their applications. New York, NY: Academic PressGoogle Scholar
Sijtsma, K., Junker, B.W. (1996). A survey of theory and methods of invariant item ordering. British Journal of Mathematical and Statistical Psychology, 49, 79105CrossRefGoogle ScholarPubMed
Sijtsma, K., Hemker, B.T. (1998). Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models. Psychometrika, 63, 183200CrossRefGoogle Scholar
Sijtsma, K. (1998). Methodology Review: Nonparametric IRT Approaches to the Analysis of Dichotomous Item Scores. Applied Psychological Measurement, 22, 331CrossRefGoogle Scholar
Stouffer, S.A., Guttman, L., Suchman, E.A. (1950). Measurement and prediction. New York, NY: John WileyGoogle Scholar
Stout, W.F. (1990). A new item response theory modeling approach with application to unidimensionality assessment and ability estimation. Psychometrika, 55, 293325CrossRefGoogle Scholar