Published online by Cambridge University Press: 01 January 2025
This paper develops a maximum likelihood based method for simultaneously performing multidimensional scaling and cluster analysis on two-way dominance or profile data. This MULTICLUS procedure utilizes mixtures of multivariate conditional normal distributions to estimate a joint space of stimulus coordinates and K vectors, one for each cluster or group, in a T-dimensional space. The conditional mixture, maximum likelihood method is introduced together with an E-M algorithm for parameter estimation. A Monte Carlo analysis is presented to investigate the performance of the algorithm as a number of data, parameter, and error factors are experimentally manipulated. Finally, a consumer psychology application is discussed involving consumer expertise/experience with microcomputers.
We wish to thank the editor, associate editor, and three anonymous reviewers for their helpful comments on earlier versions of this manuscript.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.