Published online by Cambridge University Press: 01 January 2025
This paper proposes a novel collapsed Gibbs sampling algorithm that marginalizes model parameters and directly samples latent attribute mastery patterns in diagnostic classification models. This estimation method makes it possible to avoid boundary problems in the estimation of model item parameters by eliminating the need to estimate such parameters. A simulation study showed the collapsed Gibbs sampling algorithm can accurately recover the true attribute mastery status in various conditions. A second simulation showed the collapsed Gibbs sampling algorithm was computationally more efficient than another MCMC sampling algorithm, implemented by JAGS. In an analysis of real data, the collapsed Gibbs sampling algorithm indicated good classification agreement with results from a previous study.
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/S0033312300005512a.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.