Published online by Cambridge University Press: 01 January 2025
A combinatorial data analysis strategy is reviewed that is designed to compare two arbitrary measures of proximity defined between the objects from some set. Based on a particular cross-product definition of correspondence between these two numerically specified notions of proximity (typically represented in the form of matrices), extensions are then pursued to indices of partial association that relate the observed pattern of correspondence between the first two proximity measures to a third. The attendant issues of index normalization and significance testing are discussed; the latter is approached through a simple randomization model implemented either through a Monte Carlo procedure or distributional approximations based on the first three moments. Applications of the original comparison strategy and its extensions to partial association may be developed for a variety of methodological and substantive tasks. Besides rank correlation, we emphasize the topics of spatial autocorrelation for one variable and spatial association between two and mention the connection to the usual randomization approach for one-way analysis-of-variance.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.