Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:07:00.924Z Has data issue: false hasContentIssue false

Clustering with Relational Constraint

Published online by Cambridge University Press:  01 January 2025

Anuška Ferligoj*
Affiliation:
University Edvard Kardelj
Vladimir Batagelj
Affiliation:
University Edvard Kardelj
*
Requests for reprints should be sent to: Anuška Ferligoj, Faculty of Sociology, Political Sciences and Journalism, University Edvard Kardelj, Kardeljeva ploščad 5, 61000 Ljubljana, Yugoslavia.

Abstract

The paper deals with clustering problems where grouping is constrained by a symmetric and reflexive relation. For solving clustering problems with relational constraints two methods are adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams formula, and local optimization procedure, CLUDIA. To illustrate these procedures, clusterings of the European countries are given based on the developmental indicators where the relation is determined by the geographical neighbourhoods of countries.

Type
Original Paper
Copyright
Copyright © 1982 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Extended version of the paper presented at the European meeting of the Psychometric Society, Groningen, June, 19-21, 1980.

This work was supported in part by the Boris Kidrič Fund, Yugoslavia.

References

Reference Notes

Batagelj, V. Clustering—basic notions. Seminar for numerical mathematics and computer science, 156. Ljubljana: DMFA SRS, 1979 (in Slovene).Google Scholar
Ferligoj, A., & Batagelj, V. Clustering methods in the social sciences. (report), 1980, Ljubljana: RIFSPN (in Solvene)Google Scholar
Batagelj, V. CLUSE. (manual). Ljubljana, 1980.Google Scholar
Perruchet, C. Classification sous contrainte de contiguité continue (Application aux sciences de la terre). Thesis. Paris: 1979 (in French).Google Scholar

References

Batagelj, V. Note on ultrametric hierarchical clustering algorithms. Psychometrika, 1981, 46, 351352.CrossRefGoogle Scholar
Everitt, B. Cluster analysis, 1974, London: Heinemann Educational Books.Google Scholar
Garey, M. R., & Johnson, D. S. Computer and intractability, 1979, San Francisco: Freeman.Google Scholar
The Hammond almanac 1980. Maplewood, New Jersey: Hammond Almanac, Inc., 1980.CrossRefGoogle Scholar
Hartigan, J. A. Cluster algorithms, 1975, New York: Wiley.Google Scholar
Lance, G. N., & Williams, W. T. A general theory of classificatory sorting strategies, 1. Hierarchical systems. The Computer Journal, 1967, 9, 373380.CrossRefGoogle Scholar
Lebart, L. Programme d'Agrégation avec Contraintes (C.A.H. Contiguité). Les Cahiers de l'Analyse des Données, 1978, 3, 275287 (in French)Google Scholar
Lechevallier, Y. Classification sous contraintes. In Diday, E. (Eds.), Optimisation en Classification Automatique. Paris: INRIA 1980, 677696(in French)Google Scholar
Lefkovitch, L. P. Conditional clustering. Biometrics, 1980, 36, 4358.CrossRefGoogle Scholar
Sneath, P. H. A., & Sokal, R. R. Numerical taxonomy, 1973, San Francisco: Freeman.Google Scholar
Späth, H. Cluster analyse algorithmen, 1977, München: R. Oldenbourg Verlag (in German)Google Scholar