Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T23:55:17.307Z Has data issue: false hasContentIssue false

Bayesian Hierarchical Classes Analysis

Published online by Cambridge University Press:  01 January 2025

Iwin Leenen*
Affiliation:
Universidad Complutense de Madrid and University of Leuven
Iven Van Mechelen
Affiliation:
University of Leuven
Andrew Gelman
Affiliation:
Columbia University
Stijn De Knop
Affiliation:
University of Leuven
*
Requests for reprints should be sent to Iwin Leenen, IMIFAP, Málaga Norte 25, Col. Insurgentes Mixcoac, C.P. 03920, Mexico D.F., Mexico. E-mail: iwin@imifap.org.mx

Abstract

Hierarchical classes models are models for N-way N-mode data that represent the association among the N modes and simultaneously yield, for each mode, a hierarchical classification of its elements. In this paper we present a stochastic extension of the hierarchical classes model for two-way two-mode binary data. In line with the original model, the new probabilistic extension still represents both the association among the two modes and the hierarchical classifications. A fully Bayesian method for fitting the new model is presented and evaluated in a simulation study. Furthermore, we propose tools for model selection and model checking based on Bayes factors and posterior predictive checks. We illustrate the advantages of the new approach with applications in the domain of the psychology of choice and psychiatric diagnosis.

Type
Theory and Methods
Copyright
Copyright © 2007 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Iwin Leenen is now at the Instituto Mexicano de Investigación de Familia y Población (IMIFAP), Mexico. The research reported in this paper was partially supported by the Spanish Ministerio de Educación y Ciencia (programa Ramón y Cajal) and by the Research Council of K.U.Leuven (PDM/99/037, GOA/2000/02, and GOA/2005/04).

The authors are grateful to Johannes Berkhof for fruitful discussions.

References

Beach, L.R. (1990). Image theory: Decision making in personal and organizational contexts, Chichester: Wiley.Google Scholar
Berkhof, J., Van Mechelen, I., & Gelman, A. (2003). A Bayesian approach to the selection and testing of mixture models. Statistica Sinica, 13, 423442.Google Scholar
Ceulemans, E., Van Mechelen, I., & Kuppens, P. (2004). Adapting the formal to the substantive: Constrained Tucker3-HICLAS. Journal of Classification, 21, 1950.CrossRefGoogle Scholar
Ceulemans, E., Van Mechelen, I., & Leenen, I. (2003). Tucker3 hierarchical classes analysis. Psychometrika, 68, 413433.CrossRefGoogle Scholar
Chan, D.W., & Jackson, D.N. (1979). Implicit theory of psychopathology. Multivariate Behavioral Research, 14, 319.CrossRefGoogle ScholarPubMed
Chan, D.W., & Jackson, D.N. (1982). Individual differences in the perception and judgment of psychopathology. Multivariate Behavioral Research, 17, 332.CrossRefGoogle Scholar
Cheng, C.F.G. (1999). A new approach to the study of person perception: The hierarchical classes analysis. Chinese Journal of Psychology, 41, 5364.Google Scholar
Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association, 90, 13131321.CrossRefGoogle Scholar
Chib, S., & Jeliazkov, I. (2001). Marginal likelihood from the Metropolis–Hastings output. Journal of the American Statistical Association, 96, 270281.CrossRefGoogle Scholar
Coombs, C.H. (1964). A theory of data, New York: Wiley.Google Scholar
De Boeck, P., & Rosenberg, S. (1988). Hierarchical classes: Model and data analysis. Psychometrika, 53, 361381.CrossRefGoogle Scholar
Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces, Berlin: Springer.CrossRefGoogle Scholar
Eastment, H.T., & Krzanowski, W.J. (1982). Cross-validatory choice of the number of components from a principal component analysis. Technometrics, 24, 7377.CrossRefGoogle Scholar
Falmagne, J.C., Koppen, M., Villano, M., Doignon, J.-P., & Johannesen, L. (1990). Introduction to knowledge spaces: How to build, test and search them. Psychological Review, 97, 201224.CrossRefGoogle Scholar
Ganter, B., & Wille, R. (1996). Formale Begriffsanalyse: Mathematische Grundlagen [Formal concept analysis: Mathematical foundations], Berlin: Springer.Google Scholar
Garb, H.N. (1998). Studying the clinician: Judgment research and psychological assessment, Washington: American Psychological Association.CrossRefGoogle Scholar
Garb, H.N. (2005). Clinical judgment and decision making. Annual Review of Clinical Psychology, 1, 6789.CrossRefGoogle ScholarPubMed
Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (2004). Bayesian data analysis, (2nd ed.). London: Chapman & Hall.Google Scholar
Gelman, A., Leenen, I., Van Mechelen, I., De Boeck, P., & Poblome, J. (2003). Bridges between deterministic and probabilistic classification models. Manuscript submitted for publication.Google Scholar
Gelman, A., Meng, X.-L., & Stern, H.S. (1996). Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica, 6, 733807.Google Scholar
Gelman, A., & Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457511.CrossRefGoogle Scholar
Gilks, W.R., Richardson, S., & Spiegelhalter, D.J. (1996). Markov chain Monte Carlo in practice, London: Chapman & Hall.Google Scholar
Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97109.CrossRefGoogle Scholar
Kass, R.E., &Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773795.CrossRefGoogle Scholar
Leenen, I., & Van Mechelen, I. (2001). An evaluation of two algorithms for hierarchical classes analysis. Journal of Classification, 18, 5780.CrossRefGoogle Scholar
Leenen, I., Van Mechelen, I., & De Boeck, P. (2001). Models for ordinal hierarchical classes analysis. Psychometrika, 66, 389404.CrossRefGoogle Scholar
Leenen, I., Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1999). INDCLAS: A three-way hierarchical classes model. Psychometrika, 64, 924.CrossRefGoogle Scholar
Luyten, L., Lowyck, J., & Tuerlinck, F. (2001). Task perception as a mediating variable: A contribution to the validation of instructional knowledge. British Journal of Educational Psychology, 71, 203223.CrossRefGoogle Scholar
Maris, E., De Boeck, P., & Van Mechelen, I. (1996). Probability matrix decomposition models. Psychometrika, 61, 729.CrossRefGoogle Scholar
Meng, X.-L. (1994). Posterior predictive p-values. Annals of Statistics, 22, 11421160.CrossRefGoogle Scholar
Meng, X.-L., Rosenthal, R., & Rubin, D.B. (1992). Comparing correlated correlation coefficients. Psychological Bulletin, 111, 172175.CrossRefGoogle Scholar
Meulders, M., De Boeck, P., & Van Mechelen, I. (2003). A taxonomy of latent structure assumptions for probability matrix decomposition models. Psychometrika, 68, 6177.CrossRefGoogle Scholar
Ogilvie, J.R., & Schmitt, N. (1979). Situational influences on linear and nonlinear use of information. Organizational Behavior and Human Performance, 4, 337352.Google Scholar
Rubin, D.B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Annals of Statistics, 12, 11511172.CrossRefGoogle Scholar
Sneath, P.H.A., & Sokal, R.R. (1973). Numerical taxonomy: The principles and practice of numerical classification, San Francisco: Freeman.Google Scholar
ten Berge, M., & de Raad, B. (2001). The construction of a joint taxonomy of traits and situations. European Journal of Personality, 15, 253276.CrossRefGoogle Scholar
Van Mechelen, I., Bock, H.-H., & De Boeck, P. (2004). Two-mode clustering methods: A structured overview. Statistical Methods in Medical Research, 13, 363394.CrossRefGoogle ScholarPubMed
Van Mechelen, I., & De Boeck, P. (1989). Implicit taxonomy in psychiatric diagnosis: A case study. Journal of Social and Clinical Psychology, 8, 276287.CrossRefGoogle Scholar
Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1995). The conjunctive model of hierarchical classes. Psychometrika, 60, 505521.CrossRefGoogle Scholar
Van Mechelen, I., Rosenberg, S., & De Boeck, P. (1997). On hierarchies and hierarchical classes models. In Mirkin, B., McMorris, F.R., Roberts, F.S. & Rzhetsky, A. (Eds.), Mathematical hierarchies and biology (pp. 291298). Providence: American Mathematical Society.CrossRefGoogle Scholar
Van Mechelen, I., & Van Damme, G. (1994). A latent criteria model for choice data. Acta Psychologica, 87, 8594.CrossRefGoogle Scholar
Westenberg, M.R.M., & Koele, P. (1992). Response modes, decision processes and decision outcomes. Acta Psychologica, 80, 169184.CrossRefGoogle Scholar