Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T13:46:19.127Z Has data issue: false hasContentIssue false

The role of macrophages in models of neurological and psychiatric disorder1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorials
Copyright
Copyright © Cambridge University Press 1992

References

REFERENCES

Akiyama, H. & McGeer, P. L. (1990). Brain microglia constitutively express β-2 integrins. Journal of Neuroimmunology 30, 8193.CrossRefGoogle ScholarPubMed
Akiyama, H., Itagaki, S. & McGeer, P. L. (1988). Major histo-compatibility antigen expression on rat microglia following epidural kainic acid lesions. Journal of Neuroscience Research 20, 147157.CrossRefGoogle Scholar
Andersson, P.-B., Perry, V. H. & Gordon, S. (1991). The kinetics and morphological characteristics of the macrophage–microglial response to kainic acid-induced neuronal degeneration. Neuroscience 42, 201214.CrossRefGoogle ScholarPubMed
Blinzinger, K. & Kreutzberg, G. W. (1968). Displacement of synaptic terminals from regenerating motoneurons by microglia. Zeitschrift für Zellforschung Mikroskopie und Anatomie 85, 145157.CrossRefGoogle Scholar
Brown, M. C., Perry, V. H., Lunn, E. R., Gordon, S. & Heumann, R. (1991). Macrophage dependence of peripheral sensory nerve regeneration: possible involvement of nerve growth factor. Neuron 6, 359370.CrossRefGoogle ScholarPubMed
Caroni, P. & Schwab, M. E. (1988). Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. Journal of Cell Biology 106, 12811288.CrossRefGoogle ScholarPubMed
Coffey, P. J., Perry, V. H. & Rawlins, J. N. P. (1990). An investigation into the early stages of the inflammatory response following ibotenic acid-induced neuronal degeneration. Neuroscience 35, 121132.CrossRefGoogle ScholarPubMed
DiFiglia, M. (1990). Excitotoxic injury of the neostriatum: a model for Huntington's disease. Trends in Neuroscience 13, 286289.CrossRefGoogle Scholar
Duchen, L. W. (1984). General pathology of neurons and neuroglia. In Greenfield's Neuropathology, 4th edn. (ed. Adams, J. H., Corsellis, J. A. N. and Duchen, L. W.), p. 41. Arnold: London.Google Scholar
Gordon, S. (1986). Biology of the macrophage. Journal of Cell Science (suppl. 4), 267–286.CrossRefGoogle Scholar
Graeber, M. B., Streit, W. J. & Kreutzberg, G. W. (1989). Identity of ED2-positive perivascular cells in rat brain. Journal of Neuroscience Research 22, 103106.CrossRefGoogle ScholarPubMed
Guilian, D, Allen, R. L., Baker, T. J. & Tomozawa, Y. (1986). Brain peptides and glial growth. I. Glia promoting factors as regulators of gliogenesis in the developing and injured central nervous system. Journal of Biology 102, 803820.Google Scholar
Guilian, D., Woodward, J., Young, D. G., Krebs, J. F. & Lachman, L. B. (1988). Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. Journal of Neuroscience 8, 24852490.CrossRefGoogle Scholar
Guilian, D., Vaca, K. & Noonan, C. A. (1990). Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250, 15931596.CrossRefGoogle Scholar
Hayes, G. M., Woodroofe, M. N. & Cuzner, M. L. (1987). Microglia are the major cell type expressing MHC Class II in human white matter. Journal of Neurological Science 80, 2537.CrossRefGoogle ScholarPubMed
Heumann, R., Korsching, S., Brantlow, C. & Thoenen, H. (1987). Changes in nerve growth factor synthesis in non-neuronal cells in response to sciatic nerve transection. Journal of Cell Biology 104, 16231631.CrossRefGoogle Scholar
Hickey, W. F. & Kimura, H. (1988). Perivascular microglial cells of the CNS are bone marrow derived and present antigen in vivo. Science 239, 290292.Google ScholarPubMed
Huitinga, I., van Rooijen, N., de Groot, C. J. A., Uitdehaag, B. M. J. & Dijkstra, C. D. (1990). Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. Journal of Experimental Medicine 172, 10251033.CrossRefGoogle ScholarPubMed
Konno, H., Yamamoto, T., Suzuki, H., Yamamoto, H., Iwasaki, Y., Ohara, Y., Teranuma, H. & Harata, N. (1990). Targeting of adoptively transferred experimental allergic encephalitis lesion at the sites of Wallerian degeneration. Acta Neuropathologica 80, 521526.CrossRefGoogle ScholarPubMed
Kure, K., Lyman, W. D., Weidenheim, K. M. & Dickson, D. W. (1990). Cellular localization of an HIV-1 antigen in subacute AIDS encephalitis using an improved double-labeling immunohisto-chemical method. American Journal of Pathology 136, 10851092.Google Scholar
Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal and adult mouse brain. Neuroscience 39, 151170.CrossRefGoogle ScholarPubMed
Leibovich, S. J. & Ross, R. (1975). The role of the macrophage in wound repair. American Journal of Pathology 8, 7191.Google Scholar
Ling, E. A. (1981). The origin and nature of microglia. Advances in Cellular Neurobiology 2, 3382.CrossRefGoogle Scholar
Lunn, E. R., Perry, V. H., Brown, M. C.Rosen, H. & Gordon, S (1989). Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. European Journal of Neuroscience 1, 2733.CrossRefGoogle Scholar
McGeer, P. L., Itagaki, S., Tago, H. & McGeer, E. G. (1987). Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neuroscience Letters 79, 195200.CrossRefGoogle ScholarPubMed
McGeer, P. L.Itagaki, S., Boyes, B. E. & McGeer, E. G. (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 12851291.CrossRefGoogle ScholarPubMed
Matthews, M. A. (1973). Death of the central neuron: an electron microscopic study of thalamic retrograde degeneration following cortical ablation, Journal of Neurocytology 2, 265288.CrossRefGoogle ScholarPubMed
Mellanby, J., Hawkins, C. A., Mellanby, H., Rawlins, J. N. P. & Impey, M. E. (1984). Tetanus toxin as a tool for studying epilepsy. Journal of Physiologie (Paris) 79, 207215.Google ScholarPubMed
Nathan, C. F. (1987). Secretory products of macrophages. Journal of Clinical Investigation 79, 319326.CrossRefGoogle ScholarPubMed
Oppenheim, R. W. (1981). Neuronal cell death and some related regressive phenomena during neurogenesis: a selective historical review and progress report. In Studies in Developmental Neurobiology: Essays in Honor of Victor Hamburger (ed. Cowan, W. M.), pp. 74133. Oxford University Press: Oxford.Google Scholar
Perry, V. H. & Gordon, S. (1987). Modulation of CD4 on macrophages and microglia in rat brain. Journal of Experimental Medicine 166, 11381143.CrossRefGoogle ScholarPubMed
Perry, V. H. & Gordon, S. (1991). Macrophages and the nervous system. International Review of Cytology 125, 203244.CrossRefGoogle ScholarPubMed
Perry, V. H., Hume, D. A. & Gordon, S. (1985). Immuno-histochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15, 313326.CrossRefGoogle Scholar
Perry, V. H., Brown, M. C. & Gordon, S. (1987). The macrophage response to central and peripheral nerve injury: a possible role for macrophages in regeneration. Journal of Experimental Medicine 165, 12181223.CrossRefGoogle ScholarPubMed
Pow, D. V., Perry, V. H., Morris, J. F. & Gordon, S. (1989). Microglia in the neurohypophysis associate with and endocytose terminal portions of neurosecretory neurons. Neuroscience 33, 567578.CrossRefGoogle ScholarPubMed
del Rio Hortega, P. (1932). Microglia. In Cytology and Cellular Pathology of the Nervous System (ed. Penfield, W.), pp. 482534. Paul B. Hoeber: New York.Google Scholar
Schnell, L. & Schwab, M. E. (1990). Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343, 269272.CrossRefGoogle ScholarPubMed
Shaw, J. A. G., Perry, V. H. & Mellanby, J. (1990). Tetanus toxin-induced seizures cause microglial activation in rat hippocampus. Neuroscience Letters 120, 6699.CrossRefGoogle ScholarPubMed
Streit, W. J.Graeber, M. B. & Kreutzberg, G. W. (1988). Functional plasticity of microglia: a review. Glia 1, 301307.CrossRefGoogle ScholarPubMed
Stoll, G., Trapp, B. D. & Griffin, J. W. (1989 a). Macrophage function during Wallerian degeneration of rat optic nerve: clearance of degenerating myelin and la expression. Journal of Neuroscience 9, 23272335.CrossRefGoogle Scholar
Stoll, G., Griffin, J. W., Li, C. W. & Trapp, B. D. (1989 b). Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degeneration. Journal of Neurocytology 18, 671683.CrossRefGoogle Scholar
Vaseux, R., Brousse, N., Jarry, A., Hehin, D., Marche, C., Vendrenne, C., Mikol, J., Wolff, M., Michon, C., Rosenbaum, W., Bureau, J.-F., Montagnier, L. & Brahic, M. (1987). AIDS subacute encephalitis. Identification of infected cells. American Journal of Pathology 126, 403410.Google Scholar
Vass, K., Lassmann, H., Wekerle, H. & Wisniewski, H. M. (1986). The distribution of la antigens in the lesions of rat acute experimental allergic encephalomyelitis. Acta Neuropathologica 70, 149160.CrossRefGoogle Scholar
Vaughn, J. E. & Peters, A. (1974). Neuroglial cells in the cerebral cortex of rats from young adulthood to old age: an electron microscopic study. Journal of Neurocytology 3, 405429.CrossRefGoogle Scholar