Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T22:06:26.987Z Has data issue: false hasContentIssue false

The relationship between cognitive clusters and telomere length in bipolar-schizophrenia spectrum disorders

Published online by Cambridge University Press:  03 August 2022

Caroline Gurvich*
Affiliation:
Department of Psychiatry, Central Clinical School, Monash University and the Alfred Hospital, Melbourne, VIC, Australia
Natalie Thomas
Affiliation:
Department of Biochemistry & Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne VIC, Australia
Abdul-Rahman Hudaib
Affiliation:
Department of Psychiatry, Central Clinical School, Monash University and the Alfred Hospital, Melbourne, VIC, Australia
Tamsyn E. Van Rheenen
Affiliation:
Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, VIC, Australia Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
Elizabeth H. X. Thomas
Affiliation:
Department of Psychiatry, Central Clinical School, Monash University and the Alfred Hospital, Melbourne, VIC, Australia
Eric J. Tan
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia Department of Mental Health, St Vincent's Hospital, Melbourne, VIC, Australia
Erica Neill
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia Department of Mental Health, St Vincent's Hospital, Melbourne, VIC, Australia
Sean P. Carruthers
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
Philip J. Sumner
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia
Marco Romano-Silva
Affiliation:
Department Saude Mental, Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
Kiymet Bozaoglu
Affiliation:
Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Victoria, Australia Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
Jayashri Kulkarni
Affiliation:
Department of Psychiatry, Central Clinical School, Monash University and the Alfred Hospital, Melbourne, VIC, Australia
Susan L. Rossell
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, VIC, Australia Department of Mental Health, St Vincent's Hospital, Melbourne, VIC, Australia
*
Author for correspondence: Caroline Gurvich, E-mail: caroline.gurvich@monash.edu

Abstract

Background

Schizophrenia and bipolar disorder are complex mental illnesses that are associated with cognitive deficits. There is considerable cognitive heterogeneity that exists within both disorders. Studies that cluster schizophrenia and bipolar patients into subgroups based on their cognitive profile increasingly demonstrate that, relative to healthy controls, there is a severely compromised subgroup and a relatively intact subgroup. There is emerging evidence that telomere shortening, a marker of cellular senescence, may be associated with cognitive impairments. The aim of this study was to explore the relationship between cognitive subgroups in bipolar-schizophrenia spectrum disorders and telomere length against a healthy control sample.

Methods

Participants included a transdiagnostic group diagnosed with bipolar, schizophrenia or schizoaffective disorder (n = 73) and healthy controls (n = 113). Cognitive clusters within the transdiagnostic patient group, were determined using K-means cluster analysis based on current cognitive functioning (MATRICS Consensus Cognitive Battery scores). Telomere length was determined using quantitative PCRs genomic DNA extracted from whole blood. Emergent clusters were then compared to the healthy control group on telomere length.

Results

Two clusters emerged within the patient group that were deemed to reflect a relatively intact cognitive group and a cognitively impaired subgroup. Telomere length was significantly shorter in the severely impaired cognitive subgroup compared to the healthy control group.

Conclusions

This study replicates previous findings of transdiagnostic cognitive subgroups and associates shorter telomere length with the severely impaired cognitive subgroup. These findings support emerging literature associating cognitive impairments in psychiatric disorders to accelerated cellular aging as indexed by telomere length.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, M., Elvsashagen, T., Westlye, L. T., Kaufmann, T., Athanasiu, L., Djurovic, S., … Andreassen, O. A. (2019). Telomere length is associated with childhood trauma in patients with severe mental disorders. Translational Psychiatry, 9(1), 97. doi:10.1038/s41398-019-0432-7CrossRefGoogle ScholarPubMed
Benetos, A., Kark, J. D., Susser, E., Kimura, M., Sinnreich, R., Chen, W., … Aviv, A. (2013). Tracking and fixed ranking of leukocyte telomere length across the adult life course. Aging Cell, 12(4), 615621. doi:10.1111/acel.12086CrossRefGoogle ScholarPubMed
Bergh, S., Hjorthoj, C., Sorensen, H. J., Fagerlund, B., Austin, S., Secher, R. G., … Nordentoft, M. (2016). Predictors and longitudinal course of cognitive functioning in schizophrenia spectrum disorders, 10 years after baseline: The OPUS study. Schizophrenia Research, 175(1-3), 5763. doi:10.1016/j.schres.2016.03.025CrossRefGoogle Scholar
Bora, E. (2016). Differences in cognitive impairment between schizophrenia and bipolar disorder: Considering the role of heterogeneity. Psychiatry and Clinical Neurosciences, 70(10), 424433. doi:10.1111/pcn.12410CrossRefGoogle ScholarPubMed
Broer, L., Codd, V., Nyholt, D. R., Deelen, J., Mangino, M., Willemsen, G., … Boomsma, D. I. (2013). Meta-analysis of telomere length in 19713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. European Journal of Human Genetics, 21(10), 11631168. doi:10.1038/ejhg.2012.303CrossRefGoogle Scholar
Carruthers, S. P., Van Rheenen, T. E., Gurvich, C., Sumner, P. J., & Rossell, S. L. (2019). Characterising the structure of cognitive heterogeneity in schizophrenia spectrum disorders. A systematic review and narrative synthesis. Neuroscience and Biobehavioral Reviews, 107, 252278. doi:10.1016/j.neubiorev.2019.09.006CrossRefGoogle ScholarPubMed
Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Research, 30(10), e47. doi:10.1093/nar/30.10.e47CrossRefGoogle ScholarPubMed
Chakravarti, D., LaBella, K. A., & DePinho, R. A. (2021). Telomeres: History, health, and hallmarks of aging. Cell, 184(2), 306322. doi:10.1016/j.cell.2020.12.028CrossRefGoogle ScholarPubMed
Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61(6), 136. doi:10.18637/jss.v061.i06CrossRefGoogle Scholar
Cruz, B. F., de Campos-Carli, S. M., de Oliveira, A. M., de Brito, C. B., Garcia, Z. M., do Nascimento Arifa, R. D., … Salgado, J. V. (2021). Investigating potential associations between neurocognition/social cognition and oxidative stress in schizophrenia. Psychiatry Research, 298, 113832. doi:10.1016/j.psychres.2021.113832CrossRefGoogle ScholarPubMed
Czepielewski, L. S., Massuda, R., Panizzutti, B., Grun, L. K., Barbé-Tuana, F. M., Teixeira, A. L., … Gama, C. S. (2018). Telomere length and CCL11 levels are associated with gray matter volume and episodic memory performance in schizophrenia: Evidence of pathological accelerated aging. Schizophrenia Bulletin, 44(1), 158167. doi:10.1093/schbul/sbx015CrossRefGoogle ScholarPubMed
Demanelis, K., Jasmine, F., Chen, L. S., Chernoff, M., Tong, L., Delgado, D., … Pierce, B. L. (2020). Determinants of telomere length across human tissues. Science, 369(6509), eaaz6876. doi:10.1126/science.aaz6876.CrossRefGoogle ScholarPubMed
Entringer, S., & Epel, E. S. (2020). The stress field ages: A close look into cellular aging processes. Psychoneuroendocrinology, 113, 104537. doi:10.1016/j.psyneuen.2019.104537CrossRefGoogle Scholar
Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., & Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 1731217315. doi:10.1073/pnas.0407162101CrossRefGoogle ScholarPubMed
Fernandez-Linsenbarth, I., Planchuelo-Gomez, A., Diez, A., Arjona-Valladares, A., de Luis, R., Martin-Santiago, O., … Molina, V. (2020). Neurobiological underpinnings of cognitive subtypes in psychoses: A cross-diagnostic cluster analysis. Schizophrenia Research, 229, 102111. doi:10.1016/j.schres.2020.11.013CrossRefGoogle ScholarPubMed
Ferron, S. R., Marques-Torrejon, M. A., Mira, H., Flores, I., Taylor, K., Blasco, M. A., & Farinas, I. (2009). Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 29(46), 1439414407. doi:10.1523/JNEUROSCI.3836-09.2009CrossRefGoogle ScholarPubMed
Fett, A.-K. J., Velthorst, E., Reichenberg, A., Ruggero, C. J., Callahan, J. L., Fochtmann, L. J., … Kotov, R. (2020). Long-term changes in cognitive functioning in individuals with psychotic disorders: Findings from the Suffolk County mental health project. JAMA Psychiatry, 77(4), 387396. doi:10.1001/jamapsychiatry.2019.3993CrossRefGoogle ScholarPubMed
Gao, K., Wei, C., Zhu, J., Wang, X., Chen, G., Luo, Y., … Yu, H. (2019). Exploring the causal pathway from telomere length to Alzheimer's disease: An update Mendelian randomization study. Frontiers in Psychiatry, 10, 843. doi:10.3389/fpsyt.2019.00843CrossRefGoogle ScholarPubMed
Green, M. J., Girshkin, L., Kremerskothen, K., Watkeys, O., & Quide, Y. (2020). A systematic review of studies reporting data-driven cognitive subtypes across the psychosis spectrum. Neuropsychology Review, 30(4), 446460. doi:10.1007/s11065-019-09422-7CrossRefGoogle ScholarPubMed
Hackenhaar, F. S., Josefsson, M., Adolfsson, A. N., Landfors, M., Kauppi, K., Hultdin, M., … Pudas, S. (2021). Short leukocyte telomeres predict 25-year Alzheimer's disease incidence in non-APOE epsilon4-carriers. Alzheimer's Research & Therapy, 13(1), 130. doi:10.1186/s13195-021-00871-yCrossRefGoogle ScholarPubMed
Hagg, S., Zhan, Y., Karlsson, R., Gerritsen, L., Ploner, A., van der Lee, S. J., … Pedersen, N. L. (2017). Short telomere length is associated with impaired cognitive performance in European ancestry cohorts. Translational Psychiatry, 7(4), e1100. doi:10.1038/tp.2017.73CrossRefGoogle ScholarPubMed
Hennig, C. (2007). Cluster-wise assessment of cluster stability. Computational Statistics and Data Analysis, 52, 258271.CrossRefGoogle Scholar
Hsiao, C. B., Bedi, H., Gomez, R., Khan, A., Meciszewski, T., Aalinkeel, R., … Mahajan, S. D. (2021). Telomere length shortening in microglia: Implication for accelerated senescence and neurocognitive deficits in HIV. Vaccines (Basel), 9(7), 721. doi:10.3390/vaccines9070721.CrossRefGoogle ScholarPubMed
Iwama, H., Ohyashiki, K., Ohyashiki, J. H., Hayashi, S., Yahata, N., Ando, K., … Shay, J. W. (1998). Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Human Genetics, 102(4), 397402. doi:10.1007/s004390050711CrossRefGoogle ScholarPubMed
Kaja, R., Reyes, S. M., Rossetti, H. C., & Brown, E. S. (2019). Association between telomere length and cognitive ability in a community-based sample. Neurobiology of Aging, 75, 5153. https://doi.org/10.1016/j.neurobiolaging.2018.11.006.CrossRefGoogle Scholar
Karantonis, J. A., Rossell, S. L., Carruthers, S. P., Sumner, P., Hughes, M., Green, M. J., … Van Rheenen, T. E. (2020). Cognitive validation of cross-diagnostic cognitive subgroups on the schizophrenia-bipolar spectrum. Journal of Affective Disorders, 266, 710721. doi:10.1016/j.jad.2020.01.123CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276. doi:10.1093/schbul/13.2.261CrossRefGoogle ScholarPubMed
Lewandowski, K. E., Baker, J. T., McCarthy, J. M., Norris, L. A., & Öngür, D. (2018). Reproducibility of cognitive profiles in psychosis using cluster analysis. Journal of the International Neuropsychological Society : JINS, 24(4), 382390. http://dx.doi.org/10.1017/S1355617717001047.CrossRefGoogle ScholarPubMed
Lewandowski, K. E., Sperry, S. H., Cohen, B. M., & Ongur, D. (2014). Cognitive variability in psychotic disorders: A cross-diagnostic cluster analysis. Psychological Medicine, 44(15), 32393248. doi:10.1017/S0033291714000774CrossRefGoogle ScholarPubMed
Linghui, D., Shi, Q., Chi, C., Xiaolei, L., Lixing, Z., Zhiliang, Z., & Birong, D. (2020). The association between leukocyte telomere length and cognitive performance Among the American elderly. Frontiers in Aging Neuroscience, 12, 527658. doi:10.3389/fnagi.2020.527658CrossRefGoogle ScholarPubMed
Mandara, J. (2003). The typological approach in child and family psychology: A review of theory, methods, and research. Clinical Child and Family Psychology Review, 6(2), 129146. doi:10.1023/a:1023734627624CrossRefGoogle ScholarPubMed
McCleery, A., & Nuechterlein, K. H. (2019). Cognitive impairment in psychotic illness: Prevalence, profile of impairment, developmental course, and treatment considerations. Dialogues in Clinical Neuroscience, 21(3), 239248. doi:10.31887/DCNS.2019.21.3/amccleeryCrossRefGoogle ScholarPubMed
Moyzis, R. K., Buckingham, J. M., Cram, L. S., Dani, M., Deaven, L. L., Jones, M. D., … Wu, J. R. (1988). A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 85(18), 66226626. doi:10.1073/pnas.85.18.6622CrossRefGoogle ScholarPubMed
Muezzinler, A., Zaineddin, A. K., & Brenner, H. (2013). A systematic review of leukocyte telomere length and age in adults. Ageing Research Reviews, 12(2), 509519. doi:10.1016/j.arr.2013.01.003CrossRefGoogle ScholarPubMed
North, H. F., Bruggemann, J., Cropley, V., Swaminathan, V., Sundram, S., Lenroot, R., … Shannon Weickert, C. (2021). Increased peripheral inflammation in schizophrenia is associated with worse cognitive performance and related cortical thickness reductions. European Archives of Psychiatry and Clinical Neuroscience, 271(4), 595607. doi:10.1007/s00406-021-01237-zCrossRefGoogle ScholarPubMed
Nuechterlein, K. H., Green, M. F., Kern, R. S., Baade, L. E., Barch, D. M., Cohen, J. D., … Marder, S. R. (2008). The MATRICS consensus cognitive battery, part 1: Test selection, reliability, and validity. The American Journal of Psychiatry, 165(2), 203213. doi:10.1176/appi.ajp.2007.07010042CrossRefGoogle ScholarPubMed
Overall, J. E., & Gorham, D. R. (1962). The brief psychiatric rating scale. Psychological Reports, 10(3), 799812.CrossRefGoogle Scholar
Palmos, A. B., Duarte, R. R. R., Smeeth, D. M., Hedges, E. C., Nixon, D. F., Thuret, S., & Powell, T. R. (2020). Telomere length and human hippocampal neurogenesis. Neuropsychopharmacology, 45(13), 22392247. doi:10.1038/s41386-020-00863-wCrossRefGoogle ScholarPubMed
Poletti, S., Mazza, M. G., Calesella, F., Vai, B., Lorenzi, C., Manfredi, E., … Benedetti, F. (2021). Circulating inflammatory markers impact cognitive functions in bipolar depression. Journal of Psychiatric Research, 140, 110116. doi:10.1016/j.jpsychires.2021.05.071CrossRefGoogle ScholarPubMed
Powell, T. R., Dima, D., Frangou, S., & Breen, G. (2018). Telomere length and bipolar disorder. Neuropsychopharmacology, 43(2), 454. doi:10.1038/npp.2017.239CrossRefGoogle ScholarPubMed
Pudas, S., Josefsson, M., Nordin Adolfsson, A., Landfors, M., Kauppi, K., Veng-Taasti, L. M., … Degerman, S. (2021). Short leukocyte telomeres, but not telomere attrition rates, predict memory decline in the 20–year longitudinal Betula study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 76(6), 955963. doi:10.1093/gerona/glaa322CrossRefGoogle Scholar
Rizvi, S., Raza, S. T., & Mahdi, F. (2014). Telomere length variations in aging and age-related diseases. Current Aging Science, 7(3), 161167. doi:10.2174/1874609808666150122153151CrossRefGoogle ScholarPubMed
Roberts, R. O., Boardman, L. A., Cha, R. H., Pankratz, V. S., Johnson, R. A., Druliner, B. R., … Petersen, R. C. (2014). Short and long telomeres increase risk of amnestic mild cognitive impairment. Mechanisms of Ageing and Development, 141-142, 6469. doi:10.1016/j.mad.2014.10.002CrossRefGoogle Scholar
Russo, P., Prinzi, G., Proietti, S., Lamonaca, P., Frustaci, A., Boccia, S., … Bonassi, S. (2018). Shorter telomere length in schizophrenia: Evidence from a real-world population and meta-analysis of most recent literature. Schizophrenia Research, 202, 3745. doi:10.1016/j.schres.2018.07.015CrossRefGoogle ScholarPubMed
Scarabino, D., Broggio, E., Gambina, G., & Corbo, R. M. (2017). Leukocyte telomere length in mild cognitive impairment and Alzheimer's disease patients. Experimental Gerontology, 98, 143147. doi:10.1016/j.exger.2017.08.025CrossRefGoogle ScholarPubMed
Shahab, S., Mulsant, B. H., Levesque, M. L., Calarco, N., Nazeri, A., Wheeler, A. L., … Voineskos, A. N. (2019). Brain structure, cognition, and brain age in schizophrenia, bipolar disorder, and healthy controls. Neuropsychopharmacology, 44(5), 898906. doi:10.1038/s41386-018-0298-zCrossRefGoogle ScholarPubMed
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-international neuropsychiatric interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59 (Suppl 20), 2233;quiz 34-57.Google ScholarPubMed
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 411423. https://doi.org/10.1111/1467-9868.00293.CrossRefGoogle Scholar
Valdes, A. M., Deary, I. J., Gardner, J., Kimura, M., Lu, X., Spector, T. D., … Cherkas, L. F. (2010). Leukocyte telomere length is associated with cognitive performance in healthy women. Neurobiology of Aging, 31(6), 986992. doi:10.1016/j.neurobiolaging.2008.07.012CrossRefGoogle ScholarPubMed
Van Rheenen, T. E., Cropley, V., Zalesky, A., Bousman, C., Wells, R., Bruggemann, J., … Pantelis, C. (2018). Widespread volumetric reductions in schizophrenia and schizoaffective patients displaying compromised cognitive abilities. Schizophrenia Bulletin, 44(3), 560574. doi:10.1093/schbul/sbx109CrossRefGoogle ScholarPubMed
Van Rheenen, T. E., Lewandowski, K. E., Bauer, I. E., Kapczinski, F., Miskowiak, K., Burdick, K. E., & Balanza-Martinez, V. (2020). Current understandings of the trajectory and emerging correlates of cognitive impairment in bipolar disorder: An overview of evidence. Bipolar Disorders, 22(1), 1327. doi:10.1111/bdi.12821CrossRefGoogle ScholarPubMed
Van Rheenen, T. E., Lewandowski, K. E., Tan, E. J., Ospina, L. H., Ongur, D., Neill, E., … Burdick, K. E. (2017). Characterizing cognitive heterogeneity on the schizophrenia-bipolar disorder spectrum. Psychological Medicine, 47(10), 18481864. doi:10.1017/S0033291717000307CrossRefGoogle ScholarPubMed
Vaskinn, A., Haatveit, B., Melle, I., Andreassen, O. A., Ueland, T., & Sundet, K. (2020). Cognitive heterogeneity across schizophrenia and bipolar disorder: A cluster analysis of intellectual trajectories. Journal of the International Neuropsychological Society: JINS, 26(9), 860872. doi:10.1017/S1355617720000442CrossRefGoogle ScholarPubMed
von Zglinicki, T. (2002). Oxidative stress shortens telomeres. Trends in Biochemical Sciences, 27(7), 339344. doi:10.1016/s0968-0004(02)02110-2CrossRefGoogle ScholarPubMed
Wechsler, D. (2001). Wechsler test of adult reading: WTAR. In. San Antonio, TX: The Psychological Corporation.Google Scholar
Wenzel, J., Haas, S. S., Dwyer, D. B., Ruef, A., Oeztuerk, O. F., & Antonucci, L. A., … consortium, Pronia. (2021). Cognitive subtypes in recent onset psychosis: Distinct neurobiological fingerprints? Neuropsychopharmacology, 46, 1475-1483. doi:10.1038/s41386-021-00963-1CrossRefGoogle ScholarPubMed
Yaffe, K., Lindquist, K., Kluse, M., Cawthon, R., Harris, T., & Hsueh, W.-C.Health, A. B. C. Study. (2011). Telomere length and cognitive function in community-dwelling elders: Findings from the health ABC study. Neurobiology of Aging, 32(11), 20552060. doi:10.1016/j.neurobiolaging.2009.12.006CrossRefGoogle ScholarPubMed
Zhan, Y., Clements, M. S., Roberts, R. O., Vassilaki, M., Druliner, B. R., Boardman, L. A., … Hagg, S. (2018). Association of telomere length with general cognitive trajectories: A meta-analysis of four prospective cohort studies. Neurobiology of Aging, 69, 111116. doi:10.1016/j.neurobiolaging.2018.05.004CrossRefGoogle ScholarPubMed
Supplementary material: File

Gurvich et al. supplementary material

Gurvich et al. supplementary material

Download Gurvich et al. supplementary material(File)
File 944.2 KB