Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T01:51:55.058Z Has data issue: false hasContentIssue false

Reduced willingness to expend effort for rewards is associated with risk for conversion and negative symptom severity in youth at clinical high-risk for psychosis

Published online by Cambridge University Press:  14 June 2021

Gregory P. Strauss*
Affiliation:
Department of Psychology, University of Georgia, Athens, GA, USA
Lisa A. Bartolomeo
Affiliation:
Department of Psychology, University of Georgia, Athens, GA, USA
Lauren Luther
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
*
Author for correspondence: Gregory P. Strauss, E-mail: gstrauss@uga.edu

Abstract

Background

Schizophrenia (SZ) is typically preceded by a prodromal (i.e. pre-illness) period characterized by attenuated positive symptoms and declining functional outcome. Negative symptoms are prominent among individuals at clinical high-risk (CHR) for psychosis (i.e. those with prodromal syndromes) and predictive of conversion to illness. Mechanisms underlying negative symptoms are unclear in the CHR population.

Methods

The current study evaluated whether CHR participants demonstrated deficits in the willingness to expend effort for rewards and whether these impairments are associated with negative symptoms and greater risk for conversion. Participants included 44 CHR participants and 32 healthy controls (CN) who completed the Effort Expenditure for Reward Task (EEfRT).

Results

Compared to CN, CHR participants displayed reduced likelihood of exerting high effort for high probability and magnitude rewards. Among CHR participants, reduced effort expenditure was associated with greater negative symptom severity and greater probability of conversion to a psychotic disorder on a cross-sectional risk calculator.

Conclusions

Findings suggest that effort-cost computation is a marker of illness liability and a transphasic mechanism underlying negative symptoms in the SZ spectrum.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, J., Farris, M., Devoe, D., & Metzak, P. (2020). Progression from being at-risk to psychosis: next steps. NPJ Schizophrenia, 6(1), 27. doi: 10.1038/s41537-020-00117-0CrossRefGoogle ScholarPubMed
Addington, J., Farris, M., Stowkowy, J., Santesteban-Echarri, O., Metzak, P., & Kalathil, M. S. (2019). Predictors of transition to psychosis in individuals at clinical high risk. Current Psychiatry Reports, 21(6), 39. doi: 10.1007/s11920-019-1027-yCrossRefGoogle ScholarPubMed
Addington, J., & Heinssen, R. (2012). Prediction and prevention of psychosis in youth at clinical high risk. Annual Review of Clinical Psychology, 8, 269289. doi: 10.1146/annurev-clinpsy-032511-143146CrossRefGoogle ScholarPubMed
Addington, J., Liu, L., Perkins, D. O., Carrion, R. E., Keefe, R. S., & Woods, S. W. (2017). The role of cognition and social functioning as predictors in the transition to psychosis for youth with attenuated psychotic symptoms. Schizophrenia Bulletin, 43(1), 5763. doi: 10.1093/schbul/sbw152CrossRefGoogle ScholarPubMed
Auther, A., Smith, C., & Cornblatt, B. J. G. O. (2006). Global functioning: Social scale (GF: Social). NY: Zucker-Hillside Hospital.Google Scholar
Barch, D. M., & Dowd, E. C. (2010). Goal representations and motivational drive in schizophrenia: The role of prefrontal-striatal interactions. Schizophrenia Bulletin, 36(5), 919934. doi: 10.1093/schbul/sbq068CrossRefGoogle ScholarPubMed
Barch, D. M., Treadway, M. T., & Schoen, N. (2014). Effort, anhedonia, and function in schizophrenia: Reduced effort allocation predicts amotivation and functional impairment. Journal of Abnormal Psychology, 123(2), 387397. doi: 10.1037/a0036299CrossRefGoogle ScholarPubMed
Bardgett, M. E., Depenbrock, M., Downs, N., Points, M., & Green, L. (2009). Dopamine modulates effort-based decision making in rats. Behavioral Neuroscience, 123(2), 242.CrossRefGoogle ScholarPubMed
Beiser, M., Erickson, D., Fleming, J., & Iacono, W. G. (1993). Establishing the onset of psychotic illness. American Journal of Psychiatry, 150, 13491354.Google ScholarPubMed
Bernard, J. A., Orr, J. M., & Mittal, V. A. (2017). Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. Neuroimage. Clinical, 14, 622628. doi: 10.1016/j.nicl.2017.03.001CrossRefGoogle ScholarPubMed
Bodatsch, M., Brockhaus-Dumke, A., Klosterkötter, J., & Ruhrmann, S. (2015). Forecasting psychosis by event-related potentials-systematic review and specific meta-analysis. Biological Psychiatry, 77(11), 951958. doi: 10.1016/j.biopsych.2014.09.025CrossRefGoogle ScholarPubMed
Cannon, T. D., Chung, Y., He, G., Sun, D., Jacobson, A., van Erp, T. G., … Heinssen, R. (2015). Progressive reduction in cortical thickness as psychosis develops: A multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biological Psychiatry, 77(2), 147157. doi: 10.1016/j.biopsych.2014.05.023CrossRefGoogle ScholarPubMed
Cao, H., Chén, O. Y., Chung, Y., Forsyth, J. K., McEwen, S. C., Gee, D. G., … Cannon, T. D. (2018). Cerebello-thalamo-cortical hyperconnectivity as a state-independent functional neural signature for psychosis prediction and characterization. Nature Communications, 9(1), 3836. doi: 10.1038/s41467-018-06350-7CrossRefGoogle ScholarPubMed
Carrión, R. E., Demmin, D., Auther, A. M., McLaughlin, D., Olsen, R., Lencz, T., … Cornblatt, B. A. (2016). Duration of attenuated positive and negative symptoms in individuals at clinical high risk: Associations with risk of conversion to psychosis and functional outcome. Journal of Psychiatric Research, 81, 95101. doi: 10.1016/j.jpsychires.2016.06.021.CrossRefGoogle ScholarPubMed
Chang, W. C., Chu, A. O. K., Treadway, M. T., Strauss, G. P., Chan, S. K. W., Lee, E. H. M., … Chen, E. Y. H. J. E. N. (2019b). Effort-based decision-making impairment in patients with clinically-stabilized first-episode psychosis and its relationship with amotivation and psychosocial functioning.CrossRefGoogle Scholar
Chang, W., Westbrook, A., Strauss, G., Chu, A., Chong, C., Siu, C., … Chen, E. (2020). Abnormal cognitive effort allocation and its association with amotivation in first-episode psychosis. Psychological Medicine, 50(15), 25992609. doi:10.1017/S0033291719002769.CrossRefGoogle ScholarPubMed
Charlson, F. J., Ferrari, A. J., Santomauro, D. F., Diminic, S., Stockings, E., Scott, J. G., … Whiteford, H. A. (2018). Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophrenia Bulletin, 44(6), 11951203.CrossRefGoogle ScholarPubMed
Cheng, P. W. C., Louie, L. L. C., Wong, Y. L., Wong, S. M. C., Leung, W. Y., Nitsche, M. A., & Chan, W. C. (2020). The effects of transcranial direct current stimulation (tDCS) on clinical symptoms in schizophrenia: A systematic review and meta-analysis. Asian Journal of Psychiatry, 53, 102392.CrossRefGoogle ScholarPubMed
Chong, H. Y., Teoh, S. L., Wu, D. B., Kotirum, S., Chiou, C. F., & Chaiyakunapruk, N. (2016). Global economic burden of schizophrenia: A systematic review. Neuropsychiatric Disease and Treatment, 12, 357373. doi: 10.2147/ndt.S96649Google ScholarPubMed
Chung, Y., Addington, J., Bearden, C. E., Cadenhead, K., Cornblatt, B., Mathalon, D. H., … Cannon, T. D. (2018). Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk. JAMA Psychiatry, 75(9), 960968. doi: 10.1001/jamapsychiatry.2018.1543CrossRefGoogle ScholarPubMed
Corcoran, C. M., Kimhy, D., Parrilla-Escobar, M. A., Cressman, V. L., Stanford, A. D., Thompson, J., … Malaspina, D. (2011). The relationship of social function to depressive and negative symptoms in individuals at clinical high risk for psychosis. Psychological Medicine, 41(2), 251261. doi: 10.1017/s0033291710000802CrossRefGoogle ScholarPubMed
Cousins, M. S., & Salamone, J. D. (1994). Nucleus accumbens dopamine depletions in rats affect relative response allocation in a novel cost/benefit procedure. Pharmacology Biochemistry and Behavior, 49(1), 8591.CrossRefGoogle Scholar
Croxson, P. L., Walton, M. E., O'Reilly, J. X., Behrens, T. E., & Rushworth, M. F. (2009). Effort-based cost–benefit valuation and the human brain. Journal of Neuroscience, 29(14), 45314541.CrossRefGoogle ScholarPubMed
Culbreth, A. J., Moran, E. K., & Barch, D. M. (2018). Effort-based decision-making in schizophrenia. Current Opinion in Behavioral Sciences, 22, 16. doi: 10.1016/j.cobeha.2017.12.003CrossRefGoogle ScholarPubMed
Culbreth, A. J., Moran, E. K., Kandala, S., Westbrook, A., Barch, D. M. (2020). Effort, avolition, and motivational experience in schizophrenia: Analysis of behavioral and neuroimaging data with relationships to daily motivational experience. Clinical Psychological Science, 8(3), 555568. 10.1177/2167702620901558.CrossRefGoogle ScholarPubMed
Culbreth, A., Westbrook, A., & Barch, D. (2016). Negative symptoms are associated with an increased subjective cost of cognitive effort. Journal of Abnormal Psychology, 125(4), 528536. doi: 10.1037/abn0000153CrossRefGoogle ScholarPubMed
De Herdt, A., Wampers, M., Vancampfort, D., De Hert, M., Vanhees, L., Demunter, H., … Probst, M. (2013). Neurocognition in clinical high risk young adults who did or did not convert to a first schizophrenic psychosis: A meta-analysis. Schizophrenia Research, 149(1–3), 4855. doi: 10.1016/j.schres.2013.06.017CrossRefGoogle Scholar
Demjaha, A., Valmaggia, L., Stahl, D., Byrne, M., & McGuire, P. (2010). Disorganization/cognitive and negative symptom dimensions in the at-risk mental state predict subsequent transition to psychosis. Schizophrenia Bulletin, 38(2), 351359. doi: 10.1093/schbul/sbq088CrossRefGoogle ScholarPubMed
Docx, L., de la Asuncion, J., Sabbe, B., Hoste, L., Baeten, R., Warnaerts, N., & Morrens, M. (2015). Effort discounting and its association with negative symptoms in schizophrenia. Cognitive Neuropsychiatry, 20(2), 172185.CrossRefGoogle ScholarPubMed
Endepols, H., Sommer, S., Backes, H., Wiedermann, D., Graf, R., & Hauber, W. (2010). Effort-based decision making in the rat: An [18F] fluorodeoxyglucose micro positron emission tomography study. Journal of Neuroscience, 30(29), 97089714.CrossRefGoogle ScholarPubMed
Fervaha, G., Duncan, M., Foussias, G., Agid, O., Faulkner, G. E., & Remington, G. (2015). Effort-based decision making as an objective paradigm for the assessment of motivational deficits in schizophrenia. Schizophrenia Research, 168(1–2), 483490.CrossRefGoogle ScholarPubMed
Fervaha, G., Graff-Guerrero, A., Zakzanis, K. K., Foussias, G., Agid, O., & Remington, G. (2013). Incentive motivation deficits in schizophrenia reflect effort computation impairments during cost-benefit decision-making. Journal of Psychiatric Research, 47(11), 15901596.CrossRefGoogle ScholarPubMed
First, M., Williams, J., Benjamin, L., & Spitzer, R. (2015a). User's guide for the SCID-5-PD (structured clinical interview for DSM-5 personality disorder). Arlington, VA: American Psychiatric Association.Google Scholar
First, M., Williams, J., Karg, R., & Spitzer, R. (2015b). Structured clinical interview for DSM-5-research version (SCID-5 for DSM-5, research version; SCID-5-RV). Arlington, VA: American Psychiatric Association.Google Scholar
First, M. B., Williams, J., Karg, R. S., & Spitzer, R. L. (2015c). User's guide to structured clinical interview for DSM-5 disorders (SCID-5-CV) clinical version. Arlington, VA: American Psychiatric Publishing.Google Scholar
Fusar-Poli, P., Bonoldi, I., Yung, A. R., Borgwardt, S., Kempton, M. J., Valmaggia, L., … McGuire, P. (2012). Predicting psychosis: Meta-analysis of transition outcomes in individuals at high clinical risk. Archives of General Psychiatry, 69(3), 220229.CrossRefGoogle ScholarPubMed
Fusar-Poli, P., Borgwardt, S., Bechdolf, A., Addington, J., Riecher-Rössler, A., Schultze-Lutter, F., … Seidman, L. J. (2013). The psychosis high-risk state: A comprehensive state-of-the-art review. JAMA Psychiatry, 70(1), 107120.CrossRefGoogle Scholar
Fusar-Poli, P., Tantardini, M., De Simone, S., Ramella-Cravaro, V., Oliver, D., Kingdon, J., … Millan, M. (2017). Deconstructing vulnerability for psychosis: Meta-analysis of environmental risk factors for psychosis in subjects at ultra high-risk. European Psychiatry, 40, 6575.CrossRefGoogle ScholarPubMed
Fusar-Poli, P., Yung, A., McGorry, P., & Van Os, J. (2014). Lessons learned from the psychosis high-risk state: Towards a general staging model of prodromal intervention. Psychological Medicine, 44(1), 1724.CrossRefGoogle ScholarPubMed
Giuliano, A. J., Li, H., Mesholam-Gately, R. I., Sorenson, S. M., Woodberry, K. A., & Seidman, L. J. (2012). Neurocognition in the psychosis risk syndrome: A quantitative and qualitative review. Current Pharmaceutical Design, 18(4), 399415. doi: 10.2174/138161212799316019CrossRefGoogle ScholarPubMed
Gold, J. M., Corlett, P. R., Strauss, G. P., Schiffman, J., Ellman, L. M., Walker, E. F., … Mittal, V. A. (2020). Enhancing psychosis risk prediction through computational cognitive neuroscience. Schizophrenia Bulletin, 46(6), 13461352.CrossRefGoogle ScholarPubMed
Gold, J. M., Strauss, G. P., Waltz, J. A., Robinson, B. M., Brown, J. K., & Frank, M. J. (2013). Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biological Psychiatry, 74(2), 130136. doi: 10.1016/j.biopsych.2012.12.022CrossRefGoogle ScholarPubMed
Green, M. F., Horan, W. P., Barch, D. M., & Gold, J. M. (2015). Effort-based decision making: A novel approach for assessing motivation in schizophrenia. Schizophrenia Bulletin, 41(5), 10351044. doi: 10.1093/schbul/sbv071.CrossRefGoogle ScholarPubMed
Häfner, H., Löffler, W., Maurer, K., Hambrecht, M., & Heiden, W. A. D. (1999). Depression, negative symptoms, social stagnation and social decline in the early course of schizophrenia. Acta Psychiatrica Scandinavica, 100(2), 105118. doi: 10.1111/j.1600-0447.1999.tb10831.xCrossRefGoogle ScholarPubMed
Hamilton, H. K., Roach, B. J., Bachman, P. M., Belger, A., Carrion, R. E., Duncan, E., … Mathalon, D. H. (2019). Association between P300 responses to auditory oddball stimuli and clinical outcomes in the psychosis risk syndrome. JAMA Psychiatry, 76(11), 11871197. doi: 10.1001/jamapsychiatry.2019.2135CrossRefGoogle ScholarPubMed
Harrow, M., Grossman, L. S., Jobe, T. H., & Herbener, E. S. (2005). Do patients with schizophrenia ever show periods of recovery? A 15-year multi-follow-up study. Schizophrenia Bulletin, 31(3), 723734.CrossRefGoogle ScholarPubMed
Hartmann, M. N., Hager, O. M., Reimann, A. V., Chumbley, J. R., Kirschner, M., Seifritz, E., … Kaiser, S. (2015). Apathy but not diminished expression in schizophrenia is associated with discounting of monetary rewards by physical effort. Schizophrenia Bulletin, 41(2), 503512.CrossRefGoogle Scholar
Horan, W. P., Reddy, L. F., Barch, D. M., Buchanan, R. W., Dunayevich, E., Gold, J. M., … Green, M. F. (2015). Effort-based decision-making paradigms for clinical trials in schizophrenia: Part 2 – External validity and correlates. Schizophrenia Bulletin, 41(5), 10551065.CrossRefGoogle ScholarPubMed
Huang, J., Yang, X. H., Lan, Y., Zhu, C. Y., Liu, X. Q., Wang, Y. F., … Chan, R. C. (2016). Neural substrates of the impaired effort expenditure decision making in schizophrenia. Neuropsychology, 30(6), 685696. doi: 10.1037/neu0000284CrossRefGoogle ScholarPubMed
Johnstone, E. C., Ebmeier, K. P., Miller, P., Owens, D. G., & Lawrie, S. M. (2005). Predicting schizophrenia: Findings from the Edinburgh high-risk study. The British Journal of Psychiatry, 186(1), 1825. doi: 10.1192/bjp.186.1.18CrossRefGoogle ScholarPubMed
Kring, A. M., & Barch, D. M. (2014). The motivation and pleasure dimension of negative symptoms: Neural substrates and behavioral outputs. European Neuropsychopharmacology, 24(5), 725736. doi: https://doi.org/10.1016/j.euroneuro.2013.06.007CrossRefGoogle ScholarPubMed
Lencz, T., Smith, C. W., Auther, A., Correll, C. U., & Cornblatt, B. (2004). Nonspecific and attenuated negative symptoms in patients at clinical high-risk for schizophrenia. Schizophrenia Research, 68(1), 3748. doi: 10.1016/S0920-9964(03)00214-7CrossRefGoogle ScholarPubMed
Luther, L., Firmin, R. L., Lysaker, P. H., Minor, K. S., & Salyers, M. P. (2018). A meta-analytic review of self-reported, clinician-rated, and performance-based motivation measures in schizophrenia: Are we measuring the same ‘stuff’? Clinical Psychology Review, 61, 2437.CrossRefGoogle ScholarPubMed
McCarthy, J. M., Treadway, M. T., Bennett, M. E., & Blanchard, J. J. (2016). Inefficient effort allocation and negative symptoms in individuals with schizophrenia. Schizophrenia Research, 170(2–3), 278284. doi: 10.1016/j.schres.2015.12.017CrossRefGoogle ScholarPubMed
McGorry, P. D., Hickie, I. B., Yung, A. R., Pantelis, C., & Jackson, H. J. (2006). Clinical staging of psychiatric disorders: A heuristic framework for choosing earlier, safer and more effective interventions. Australian and New Zealand Journal of Psychiatry, 40(8), 616622. doi: 10.1080/j.1440-1614.2006.01860.xCrossRefGoogle ScholarPubMed
McGorry, P. D., Nelson, B., Goldstone, S., & Yung, A. R. (2010). Clinical staging: A heuristic and practical strategy for new research and better health and social outcomes for psychotic and related mood disorders. Canadian Journal of Psychiatry, 55(8), 486497. doi: 10.1177/070674371005500803CrossRefGoogle ScholarPubMed
Meyer, E. C., Carrión, R. E., Cornblatt, B. A., Addington, J., Cadenhead, K. S., Cannon, T. D., … group, t. N. (2014). The relationship of neurocognition and negative symptoms to social and role functioning over time in individuals at clinical high risk in the first phase of the North American Prodrome Longitudinal Study. Schizophrenia Bulletin, 40(6), 14521461. doi:10.1093/schbul/sbt235CrossRefGoogle ScholarPubMed
Miller, T. J., McGlashan, T. H., Woods, S. W., Stein, K., Driesen, N., Corcoran, C. M. (1999). Symptom assessment in schizophrenic prodromal states. Psychiatric Quarterly, 70(4), 273287.CrossRefGoogle ScholarPubMed
Niendam, T., Bearden, C., Johnson, J., & Cannon, T. J. L. A. (2006). Global functioning: Role scale (GF: Role). Los Angeles, CA:, University of California.Google Scholar
Oliver, D., Reilly, T. J., Baccaredda Boy, O., Petros, N., Davies, C., Borgwardt, S., … Fusar-Poli, P. (2020). What causes the onset of psychosis in individuals at clinical high risk? A meta-analysis of risk and protective factors. Schizophrenia Bulletin, 46(1), 110120. doi: 10.1093/schbul/sbz039CrossRefGoogle Scholar
Osoegawa, C., Gomes, J. S., Grigolon, R. B., Brietzke, E., Gadelha, A., Lacerda, A. L., … de Jesus, D. (2018). Non-invasive brain stimulation for negative symptoms in schizophrenia: An updated systematic review and meta-analysis. Schizophrenia Research, 197, 3444.CrossRefGoogle ScholarPubMed
Pelletier-Baldelli, A., Strauss, G. P., Visser, K. H., & Mittal, V. A. (2017). Initial development and preliminary psychometric properties of the Prodromal Inventory of Negative Symptoms (PINS). Schizophrenia Research, 189, 4349. doi: 10.1016/j.schres.2017.01.055CrossRefGoogle ScholarPubMed
Piskulic, D., Addington, J., Cadenhead, K. S., Cannon, T. D., Cornblatt, B. A., Heinssen, R., … Walker, E. F. (2012). Negative symptoms in individuals at clinical high risk of psychosis. Psychiatry Research, 196(2–3), 220224. doi: 10.1016/j.psychres.2012.02.018CrossRefGoogle ScholarPubMed
Prévost, C., Pessiglione, M., Météreau, E., Cléry-Melin, M.-L., & Dreher, J.-C. (2010). Separate valuation subsystems for delay and effort decision costs. Journal of Neuroscience, 30(42), 1408014090.CrossRefGoogle ScholarPubMed
Reddy, L. F., Horan, W. P., Barch, D. M., Buchanan, R. W., Dunayevich, E., Gold, J. M., … Green, M. F. (2015). Effort-based decision-making paradigms for clinical trials in schizophrenia: Part 1 – Psychometric characteristics of 5 paradigms. Schizophrenia Bulletin, 41(5), 10451054.CrossRefGoogle ScholarPubMed
Riecher-Rössler, A., & Studerus, E. (2017). Prediction of conversion to psychosis in individuals with an at-risk mental state: A brief update on recent developments. Current Opinion in Psychiatry, 30(3), 209219. doi: 10.1097/yco.0000000000000320CrossRefGoogle Scholar
Salamone, J. D., Correa, M., Farrar, A. M., Nunes, E. J., & Pardo, M. (2009). Dopamine, behavioral economics, and effort. Frontiers in Behavioral Neuroscience, 3, 13.CrossRefGoogle ScholarPubMed
Salamone, J. D., Cousins, M. S., & Bucher, S. (1994). Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behavioural Brain Research, 65(2), 221229.CrossRefGoogle ScholarPubMed
Schlosser, D. A., Jacobson, S., Chen, Q., Sugar, C. A., Niendam, T. A., Li, G., … Cannon, T. D. (2012). Recovery from an at-risk state: Clinical and functional outcomes of putatively prodromal youth who do not develop psychosis. Schizophrenia Bulletin, 38(6), 12251233. doi: 10.1093/schbul/sbr098CrossRefGoogle Scholar
Serper, M., Payne, E., Dill, C., Portillo, C., & Taliercio, J. (2017). Allocating effort and anticipating pleasure in schizophrenia: Relationship with real world functioning. European Psychiatry, 46, 5764.CrossRefGoogle ScholarPubMed
Strauss, G. P., & Chapman, H. C. (2018). Preliminary psychometric properties of the brief negative symptom scale in youth at clinical high-risk for psychosis. Schizophrenia Research, 193, 435437. doi: 10.1016/j.schres.2017.07.051mCrossRefGoogle ScholarPubMed
Strauss, G. P., Pelletier-Baldelli, A., Visser, K. F., Walker, E. F., & Mittal, V. A. (2020). A review of negative symptom assessment strategies in youth at clinical high-risk for psychosis. Schizophrenia Research, 222, 104112. https://doi.org/10.1016/j.schres.2020.04.019.CrossRefGoogle ScholarPubMed
Strauss, G. P., Waltz, J. A., & Gold, J. M. (2014). A review of reward processing and motivational impairment in schizophrenia. Schizophrenia Bulletin, 40(Suppl 2), S107S116. doi: 10.1093/schbul/sbt197CrossRefGoogle ScholarPubMed
Strauss, G. P., Whearty, K. M., Morra, L. F., Sullivan, S. K., Ossenfort, K. L., & Frost, K. H. (2016). Avolition in schizophrenia is associated with reduced willingness to expend effort for reward on a progressive ratio task. Schizophrenia Research, 170(1), 198204. doi: 10.1016/j.schres.2015.12.006CrossRefGoogle ScholarPubMed
Treadway, M. T., Buckholtz, J. W., Cowan, R. L., Woodward, N. D., Li, R., Ansari, M. S., … Zald, D. H. (2012). Dopaminergic mechanisms of individual differences in human effort-based decision-making. Journal of Neuroscience, 32(18), 61706176.CrossRefGoogle ScholarPubMed
Treadway, M. T., Buckholtz, J. W., Schwartzman, A. N., Lambert, W. E., & Zald, D. H. (2009). Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS One, 4(8), e6598.CrossRefGoogle ScholarPubMed
Treadway, M. T., Peterman, J. S., Zald, D. H., & Park, S. (2015). Impaired effort allocation in patients with schizophrenia. Schizophrenia Research, 161(2), 382385. doi: https://doi.org/10.1016/j.schres.2014.11.024CrossRefGoogle ScholarPubMed
Valmaggia, L. R., Stahl, D., Yung, A. R., Nelson, B., Fusar-Poli, P., McGorry, P. D., & McGuire, P. K. (2013). Negative psychotic symptoms and impaired role functioning predict transition outcomes in the at-risk mental state: A latent class cluster analysis study. Psychological Medicine, 43(11), 23112325. doi: 10.1017/s0033291713000251CrossRefGoogle Scholar
van Tricht, M. J., Nieman, D. H., Koelman, J. H., Bour, L. J., van der Meer, J. N., van Amelsvoort, T. A., … de Haan, L. (2011). Auditory ERP components before and after transition to a first psychotic episode. Biological Psychology, 87(3), 350357. doi: 10.1016/j.biopsycho.2011.04.005CrossRefGoogle ScholarPubMed
Walton, M. E., Groves, J., Jennings, K. A., Croxson, P. L., Sharp, T., Rushworth, M. F., & Bannerman, D. M. (2009). Comparing the role of the anterior cingulate cortex and 6-hydroxydopamine nucleus accumbens lesions on operant effort-based decision making. European Journal of Neuroscience, 29(8), 16781691.CrossRefGoogle ScholarPubMed
Wang, J., Huang, J., Yang, X.-h., Lui, S. S., Cheung, E. F., & Chan, R. C. (2015). Anhedonia in schizophrenia: Deficits in both motivation and hedonic capacity. Schizophrenia Research, 168(1–2), 465474.CrossRefGoogle ScholarPubMed
Wardle, M. C., Treadway, M. T., Mayo, L. M., Zald, D. H., & de Wit, H. (2011). Amping up effort: Effects of d-amphetamine on human effort-based decision-making. Journal of Neuroscience, 31(46), 1659716602.CrossRefGoogle ScholarPubMed
Wolf, D. H., Satterthwaite, T. D., Kantrowitz, J. J., Katchmar, N., Vandekar, L., Elliott, M. A., & Ruparel, K. (2014). Amotivation in schizophrenia: Integrated assessment with behavioral, clinical, and imaging measures. Schizophrenia Bulletin, 40(6), 13281337.CrossRefGoogle ScholarPubMed
Yung, A. R., & McGorry, P. D. (1996). The initial prodrome in psychosis: Descriptive and qualitative aspects. Australian and New Zealand Journal of Psychiatry, 30(5), 587599. doi: 10.3109/00048679609062654CrossRefGoogle ScholarPubMed
Yung, A. R., McGorry, P. D., McFarlane, C. A., Jackson, H. J., Patton, G. C., & Rakkar, A. (1996). Monitoring and care of young people at incipient risk of psychosis. Schizophrenia Bulletin, 22(2), 283303. doi: 10.1093/schbul/22.2.283CrossRefGoogle ScholarPubMed
Zhang, T., Xu, L., Tang, Y., Li, H., Tang, X., Cui, H., … Liu, X. (2018). Prediction of psychosis in prodrome: Development and validation of a simple, personalized risk calculator. Psychological Medicine, 49(12), 19901998. doi: 10.1017/S0033291718002738.CrossRefGoogle ScholarPubMed
Supplementary material: File

Strauss et al. supplementary material

Strauss et al. supplementary material

Download Strauss et al. supplementary material(File)
File 38.7 KB