Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T18:48:36.764Z Has data issue: false hasContentIssue false

Multivariate classification provides a neural signature of Tourette disorder

Published online by Cambridge University Press:  03 November 2021

Giuseppe A. Zito
Affiliation:
Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France Support Centre for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
Andreas Hartmann
Affiliation:
Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France National Reference Center for Tourette Syndrome, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
Benoît Béranger
Affiliation:
Center for NeuroImaging Research (CENIR), Paris Brain Institute, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMR, 7225, Paris, France
Samantha Weber
Affiliation:
Psychosomatics Unit of the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
Selma Aybek
Affiliation:
Psychosomatics Unit of the Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, Bern CH-3010, Switzerland
Johann Faouzi
Affiliation:
Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, ICM, Inria Paris, Aramis project-team, Paris, France
Emmanuel Roze
Affiliation:
Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
Marie Vidailhet
Affiliation:
Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France
Yulia Worbe*
Affiliation:
Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, Paris, France National Reference Center for Tourette Syndrome, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
*
Author for correspondence: Yulia Worbe, E-mail: yulia.worbe@aphp.fr

Abstract

Background

Tourette disorder (TD), hallmarks of which are motor and vocal tics, has been related to functional abnormalities in large-scale brain networks. Using a fully data driven approach in a prospective, case–control study, we tested the hypothesis that functional connectivity of these networks carries a neural signature of TD. Our aim was to investigate (i) the brain networks that distinguish adult patients with TD from controls, and (ii) the effects of antipsychotic medication on these networks.

Methods

Using a multivariate analysis based on support vector machine (SVM), we developed a predictive model of resting state functional connectivity in 48 patients and 51 controls, and identified brain networks that were most affected by disease and pharmacological treatments. We also performed standard univariate analyses to identify differences in specific connections across groups.

Results

SVM was able to identify TD with 67% accuracy (p = 0.004), based on the connectivity in widespread networks involving the striatum, fronto-parietal cortical areas and the cerebellum. Medicated and unmedicated patients were discriminated with 69% accuracy (p = 0.019), based on the connectivity among striatum, insular and cerebellar networks. Univariate approaches revealed differences in functional connectivity within the striatum in patients v. controls, and between the caudate and insular cortex in medicated v. unmedicated TD.

Conclusions

SVM was able to identify a neuronal network that distinguishes patients with TD from control, as well as medicated and unmedicated patients with TD, holding a promise to identify imaging-based biomarkers of TD for clinical use and evaluation of the effects of treatment.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychological Association, A. P. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Washington, D.C, USA: American Psychiatric Pub.Google Scholar
Atkinson-Clement, C., Porte, C.-A., de Liege, A., Wattiez, N., Klein, Y., Beranger, B., … Pouget, P. (2020). Neural correlates and role of medication in reactive motor impulsivity in Tourette disorder. Cortex, 125, 6072.CrossRefGoogle ScholarPubMed
Bohlhalter, S., Goldfine, A., Matteson, S., Garraux, G., Hanakawa, T., Kansaku, K., … Hallett, M. (2006). Neural correlates of tic generation in Tourette syndrome: An event-related functional MRI study. Brain, 129(8), 20292037.CrossRefGoogle ScholarPubMed
Bronfeld, M., Yael, D., Belelovsky, K., & Bar-Gad, I. (2013). Motor tics evoked by striatal disinhibition in the rat. Frontiers in Systems Neuroscience, 7, 50.CrossRefGoogle ScholarPubMed
Bubl, E., Perlov, E., & Tebartz Van Elst, L. (2006). Aripiprazole in patients with Tourette syndrome. The World Journal of Biological Psychiatry, 7(2), 123125.CrossRefGoogle ScholarPubMed
Cavanna, A. E., Black, K. J., Hallett, M., & Voon, V. (2017). Neurobiology of the premonitory urge in Tourette's syndrome: Pathophysiology and treatment implications. The Journal of Neuropsychiatry and Clinical Neurosciences, 29(2), 95104.CrossRefGoogle ScholarPubMed
Conceição, V. A., Dias, Â, Farinha, A. C., & Maia, T. V. (2017). Premonitory urges and tics in Tourette syndrome: Computational mechanisms and neural correlates. Current Opinion in Neurobiology, 46, 187199.CrossRefGoogle ScholarPubMed
Cox, J. H., Seri, S., & Cavanna, A. E. (2018). Sensory aspects of Tourette syndrome. Neuroscience & Biobehavioral Reviews, 88, 170176.CrossRefGoogle ScholarPubMed
Draper, A., Jackson, G. M., Morgan, P. S., & Jackson, S. R. (2016). Premonitory urges are associated with decreased grey matter thickness within the insula and sensorimotor cortex in young people with Tourette syndrome. Journal of Neuropsychology, 10(1), 143153.CrossRefGoogle ScholarPubMed
Eddy, C. M., Cavanna, A. E., Rickards, H. E., & Hansen, P. C. (2016). Temporo-parietal dysfunction in Tourette syndrome: Insights from an fMRI study of theory of mind. Journal of Psychiatric Research, 81, 102111.CrossRefGoogle ScholarPubMed
Fahim, C., Yoon, U., Das, S., Lyttelton, O., Chen, J., Arnaoutelis, R., … Brandner, C. (2010). Somatosensory–motor bodily representation cortical thinning in Tourette: Effects of tic severity, age and gender. Cortex, 46(6), 750760.CrossRefGoogle ScholarPubMed
Fredericksen, K., Cutting, L., Kates, W., Mostofsky, S. H., Singer, H., Cooper, K., … Kaufmann, W. E. (2002). Disproportionate increases of white matter in right frontal lobe in Tourette syndrome. Neurology, 58(1), 8589.CrossRefGoogle ScholarPubMed
Ganos, C., Roessner, V., & Münchau, A. (2013). The functional anatomy of Gilles de la Tourette syndrome. Neuroscience & Biobehavioral Reviews, 37(6), 10501062.CrossRefGoogle ScholarPubMed
Greene, D. J., Church, J. A., Dosenbach, N. U., Nielsen, A. N., Adeyemo, B., Nardos, B., … Schlaggar, B. L. (2016). Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI. Developmental Science, 19(4), 581598.CrossRefGoogle ScholarPubMed
Hammers, A., Allom, R., Koepp, M. J., Free, S. L., Myers, R., Lemieux, L., … Duncan, J. S. (2003). Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human Brain Mapping, 19(4), 224247.CrossRefGoogle Scholar
Handley, R., Zelaya, F. O., Reinders, A. S., Marques, T. R., Mehta, M. A., O'Gorman, R., … Williams, S. (2013). Acute effects of single-dose aripiprazole and haloperidol on resting cerebral blood flow (rCBF) in the human brain. Human Brain Mapping, 34(2), 272282.CrossRefGoogle ScholarPubMed
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Washington, D.C, USA: Springer Science & Business Media.CrossRefGoogle Scholar
Hirschtritt, M. E., Lee, P. C., Pauls, D. L., Dion, Y., Grados, M. A., Illmann, C., … Lyon, G. J. (2015). Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in Tourette syndrome. JAMA Psychiatry, 72(4), 325333.CrossRefGoogle ScholarPubMed
Jackson, S. R., Parkinson, A., Kim, S. Y., Schüermann, M., & Eickhoff, S. B. (2011). On the functional anatomy of the urge-for-action. Cognitive Neuroscience, 2(3–4), 227243.CrossRefGoogle ScholarPubMed
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. Neuroimage, 62(2), 782790.CrossRefGoogle ScholarPubMed
Jordan, S., Koprivica, V., Dunn, R., Tottori, K., Kikuchi, T., & Altar, C. A. (2004). In vivo effects of aripiprazole on cortical and striatal dopaminergic and serotonergic function. European Journal of Pharmacology, 483(1), 4553.CrossRefGoogle ScholarPubMed
Kastrup, A., Schlotter, W., Plewnia, C., & Bartels, M. (2005). Treatment of tics in Tourette syndrome with aripiprazole. Journal of Clinical Psychopharmacology, 25(1), 9496.CrossRefGoogle ScholarPubMed
Kates, W. R., Frederikse, M., Mostofsky, S. H., Folley, B. S., Cooper, K., Mazur-Hopkins, P., … Pearlson, G. D. (2002). MRI Parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome. Psychiatry Research: Neuroimaging, 116(1–2), 6381.CrossRefGoogle ScholarPubMed
Kundu, P., Inati, S. J., Evans, J. W., Luh, W.-M., & Bandettini, P. A. (2012). Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. Neuroimage, 60(3), 17591770.CrossRefGoogle ScholarPubMed
Kundu, P., Voon, V., Balchandani, P., Lombardo, M. V., Poser, B. A., & Bandettini, P. A. (2017). Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals. Neuroimage, 154, 5980.CrossRefGoogle ScholarPubMed
Leckman, J. F., Riddle, M. A., Hardin, M. T., Ort, S. I., Swartz, K. L., Stevenson, J., & Cohen, D. J. (1989). The Yale global tic severity scale: Initial testing of a clinician-rated scale of tic severity. Journal of the American Academy of Child & Adolescent Psychiatry, 28(4), 566573.CrossRefGoogle ScholarPubMed
Lee, W. H., & Frangou, S. (2017). Linking functional connectivity and dynamic properties of resting-state networks. Scientific Reports, 7(1), 110.CrossRefGoogle ScholarPubMed
Lerner, A., Bagic, A., Boudreau, E., Hanakawa, T., Pagan, F., Mari, Z., … Simmons, J. (2007). Neuroimaging of neuronal circuits involved in tic generation in patients with Tourette syndrome. Neurology, 68(23), 19791987.CrossRefGoogle ScholarPubMed
Lerner, A., Bagic, A., Hanakawa, T., Boudreau, E. A., Pagan, F., Mari, Z., … Murphy, D. L. (2009). Involvement of insula and cingulate cortices in control and suppression of natural urges. Cerebral Cortex, 19(1), 218223.CrossRefGoogle ScholarPubMed
Martino, D., Ganos, C., & Worbe, Y. (2018). Neuroimaging applications in Tourette's syndrome. International Review of Neurobiology, 143, 65108.CrossRefGoogle ScholarPubMed
Mazzone, L., Yu, S., Blair, C., Gunter, B. C., Wang, Z., Marsh, R., & Peterson, B. S. (2010). An FMRI study of frontostriatal circuits during the inhibition of eye blinking in persons with Tourette syndrome. American Journal of Psychiatry, 167(3), 341349.CrossRefGoogle ScholarPubMed
McCairn, K. W., Iriki, A., & Isoda, M. (2013). Global dysrhythmia of cerebro-basal ganglia–cerebellar networks underlies motor tics following striatal disinhibition. Journal of Neuroscience, 33(2), 697708.CrossRefGoogle ScholarPubMed
Mostofsky, S. H., Schafer, J. G., Abrams, M. T., Goldberg, M. C., Flower, A. A., Boyce, A., … Denckla, M. B. (2003). fMRI evidence that the neural basis of response inhibition is task-dependent. Cognitive Brain Research, 17(2), 419430.CrossRefGoogle ScholarPubMed
Nielsen, A. N., Barch, D. M., Petersen, S. E., Schlaggar, B. L., & Greene, D. J. (2019). Machine learning with neuroimaging: Evaluating its applications in psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5, 791798.Google ScholarPubMed
Nielsen, A. N., Gratton, C., Church, J. A., Dosenbach, N. U., Black, K. J., Petersen, S. E., … Greene, D. J. (2020). Atypical functional connectivity in Tourette syndrome differs between children and adults. Biological Psychiatry, 87(2), 164173.CrossRefGoogle ScholarPubMed
O'Brien, K. R., Kober, T., Hagmann, P., Maeder, P., Marques, J., Lazeyras, F., … Roche, A. (2014). Robust T1-weighted structural brain imaging and morphometry at 7T using MP2RAGE. PLoS One, 9(6), e99676 (online journal).CrossRefGoogle ScholarPubMed
Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 84, 320341.CrossRefGoogle ScholarPubMed
Rae, C. L., Critchley, H. D., & Seth, A. K. (2019). A Bayesian account of the sensory-motor interactions underlying symptoms of Tourette syndrome. Frontiers in Psychiatry, 10, 29.CrossRefGoogle ScholarPubMed
Ramkiran, S., Heidemeyer, L., Gaebler, A., Shah, N. J., & Neuner, I. (2019). Alterations in basal ganglia-cerebello-thalamo-cortical connectivity and whole brain functional network topology in Tourette's syndrome. NeuroImage: Clinical, 24, 101998.CrossRefGoogle ScholarPubMed
Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-M., Greco, B., Hagmann, P., … Van De Ville, D. (2012). Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage, 62(3), 20212033.CrossRefGoogle ScholarPubMed
Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22(1), 158165.CrossRefGoogle ScholarPubMed
Sigurdsson, H. P., Jackson, S. R., Jolley, L., Mitchell, E., & Jackson, G. M. (2020). Alterations in cerebellar grey matter structure and covariance networks in young people with Tourette syndrome. Cortex, 126, 115.CrossRefGoogle ScholarPubMed
Singer, H. S. (2005). Tourette's syndrome: From behaviour to biology. The Lancet Neurology, 4(3), 149159.CrossRefGoogle ScholarPubMed
Tinaz, S., Malone, P., Hallett, M., & Horovitz, S. G. (2015). Role of the right dorsal anterior insula in the urge to tic in Tourette syndrome. Movement Disorders, 30(9), 11901197.CrossRefGoogle ScholarPubMed
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273289.CrossRefGoogle ScholarPubMed
Wegrzyk, J., Kebets, V., Richiardi, J., Galli, S., Van de Ville, D., & Aybek, S. (2018). Identifying motor functional neurological disorder using resting-state functional connectivity. NeuroImage: Clinical, 17, 163168.CrossRefGoogle ScholarPubMed
Wolfers, T., Buitelaar, J. K., Beckmann, C. F., Franke, B., & Marquand, A. F. (2015). From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neuroscience & Biobehavioral Reviews, 57, 328349.CrossRefGoogle ScholarPubMed
Worbe, Y., Gerardin, E., Hartmann, A., Valabrégue, R., Chupin, M., Tremblay, L., … Lehéricy, S. (2010). Distinct structural changes underpin clinical phenotypes in patients with Gilles de la Tourette syndrome. Brain, 133(12), 36493660.CrossRefGoogle ScholarPubMed
Worbe, Y., Lehericy, S., & Hartmann, A. (2015). Neuroimaging of tic genesis: Present status and future perspectives. Movement Disorders, 30(9), 11791183.CrossRefGoogle ScholarPubMed
Worbe, Y., Malherbe, C., Hartmann, A., Pélégrini-Issac, M., Messé, A., Vidailhet, M., … Benali, H. (2012). Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome. Brain, 135(6), 19371946.CrossRefGoogle ScholarPubMed
Worbe, Y., Sgambato-Faure, V., Epinat, J., Chaigneau, M., Tandé, D., François, C., … Tremblay, L. (2013). Towards a primate model of Gilles de la Tourette syndrome: Anatomo-behavioural correlation of disorders induced by striatal dysfunction. Cortex, 49(4), 11261140.CrossRefGoogle ScholarPubMed
Wu, G., & Chang, E. Y. (2003). Class-boundary alignment for imbalanced dataset learning. Paper presented at the ICML 2003 workshop on learning from imbalanced data sets II, Washington, DC.Google Scholar
Supplementary material: File

Zito et al. supplementary material

Zito et al. supplementary material 1

Download Zito et al. supplementary material(File)
File 464.6 KB
Supplementary material: File

Zito et al. supplementary material

Zito et al. supplementary material 2

Download Zito et al. supplementary material(File)
File 460 KB
Supplementary material: Image

Zito et al. supplementary material

Zito et al. supplementary material 3

Download Zito et al. supplementary material(Image)
Image 52.1 KB