Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T01:48:00.979Z Has data issue: false hasContentIssue false

Latent cause inference during extinction learning in trauma-exposed individuals with and without PTSD

Published online by Cambridge University Press:  08 March 2021

Agnes Norbury*
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Hannah Brinkman
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Mary Kowalchyk
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Elisa Monti
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Robert H. Pietrzak
Affiliation:
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA United States Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
Daniela Schiller
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Adriana Feder
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
*
Author for correspondence: Agnes Norbury, E-mail: agnes.norbury@mssm.edu

Abstract

Background

Problems in learning that sights, sounds, or situations that were once associated with danger have become safe (extinction learning) may explain why some individuals suffer prolonged psychological distress following traumatic experiences. Although simple learning models have been unable to provide a convincing account of why this learning fails, it has recently been proposed that this may be explained by individual differences in beliefs about the causal structure of the environment.

Methods

Here, we tested two competing hypotheses as to how differences in causal inference might be related to trauma-related psychopathology, using extinction learning data collected from clinically well-characterised individuals with varying degrees of post-traumatic stress (N = 56). Model parameters describing individual differences in causal inference were related to multiple post-traumatic stress disorder (PTSD) and depression symptom dimensions via network analysis.

Results

Individuals with more severe PTSD were more likely to assign observations from conditioning and extinction stages to a single underlying cause. Specifically, greater re-experiencing symptom severity was associated with a lower likelihood of inferring that multiple causes were active in the environment.

Conclusions

We interpret these results as providing evidence of a primary deficit in discriminative learning in participants with more severe PTSD. Specifically, a tendency to attribute a greater diversity of stimulus configurations to the same underlying cause resulted in greater uncertainty about stimulus-outcome associations, impeding learning both that certain stimuli were safe, and that certain stimuli were no longer dangerous. In the future, better understanding of the role of causal inference in trauma-related psychopathology may help refine cognitive therapies for these disorders.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th edn). Washington, DC: Author. https://doi.org/10.1176/appi.books.9780890425596.Google Scholar
Armour, C., Contractor, A., Shea, T., Elhai, J. D., & Pietrzak, R. H. (2016). Factor structure of the PTSD checklist for DSM-5: Relationships among symptom clusters, anger, and impulsivity. The Journal of Nervous and Mental Disease, 204(2), 108115. https://doi.org/10.1097/NMD.0000000000000430CrossRefGoogle ScholarPubMed
Armour, C., Fried, E. I., Deserno, M. K., Tsai, J., & Pietrzak, R. H. (2017). A network analysis of DSM-5 posttraumatic stress disorder symptoms and correlates in U.S. military veterans. Journal of Anxiety Disorders, 45, 4959. https://doi.org/10.1016/j.janxdis.2016.11.008CrossRefGoogle ScholarPubMed
Armour, C., Tsai, J., Durham, T. A., Charak, R., Biehn, T. L., Elhai, J. D., & Pietrzak, R. H. (2015). Dimensional structure of DSM-5 posttraumatic stress symptoms: Support for a hybrid anhedonia and externalizing behaviors model. Journal of Psychiatric Research, 61, 106113. https://doi.org/10.1016/j.jpsychires.2014.10.012CrossRefGoogle ScholarPubMed
Arnaudova, I., Kindt, M., Fanselow, M., & Beckers, T. (2017). Pathways towards the proliferation of avoidance in anxiety and implications for treatment. Behaviour Research and Therapy, 96, 313. https://doi.org/10.1016/j.brat.2017.04.004CrossRefGoogle ScholarPubMed
Badour, C. L., Blonigen, D. M., Boden, M. T., Feldner, M. T., & Bonn-Miller, M. O. (2012). A longitudinal test of the bi-directional relations between avoidance coping and PTSD severity during and after PTSD treatment. Behaviour Research and Therapy, 50(10), 610616. https://doi.org/10.1016/j.brat.2012.06.006CrossRefGoogle ScholarPubMed
Beck, A. T., Steer, R. A., & Brown, G. K.. (1996). Manual for the Beck depression inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Békés, V., Beaulieu-Prévost, D., Guay, S., Belleville, G., & Marchand, A. (2019). Trauma-related negative cognitions mediate the relationship between avoidant personality beliefs and impeded response to psychotherapy for PTSD. Journal of Aggression, Maltreatment & Trauma, 28(3), 297312. https://doi.org/10.1080/10926771.2018.1500504CrossRefGoogle Scholar
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 513. https://doi.org/10.1002/wps.20375CrossRefGoogle ScholarPubMed
Bringmann, L. F., Lemmens, L. H. J. M., Huibers, M. J. H., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the Beck depression inventory-II. Psychological Medicine, 45(4), 747757. https://doi.org/10.1017/S0033291714001809CrossRefGoogle ScholarPubMed
Brown, V. M., Zhu, L., Wang, J. M., Frueh, B. C., King-Casas, B., & Chiu, P. H. (2018). Associability-modulated loss learning is increased in posttraumatic stress disorder. ELife, 7, e30150. https://doi.org/10.7554/eLife.30150CrossRefGoogle ScholarPubMed
Burger, J., Isvoranu, A.-M., Lunansky, G., Haslbeck, J., Epskamp, S., Hoekstra, R. H. A., … Blanken, T. (2020). Reporting standards for psychological network analyses in cross-sectional data. PsyArXiv. https://doi.org/10.31234/osf.io/4y9nzGoogle Scholar
Contractor, A. A., Roley-Roberts, M. E., Lagdon, S., & Armour, C. (2017). Heterogeneity in patterns of DSM-5 posttraumatic stress disorder and depression symptoms: Latent profile analyses. Journal of Affective Disorders, 212, 1724. https://doi.org/10.1016/j.jad.2017.01.029CrossRefGoogle ScholarPubMed
de Haan, A., Landolt, M. A., Fried, E. I., Kleinke, K., Alisic, E., Bryant, R., … … Meiser-Stedman, R. (2020). Dysfunctional posttraumatic cognitions, posttraumatic stress and depression in children and adolescents exposed to trauma: A network analysis. Journal of Child Psychology and Psychiatry, 61(1), 7787. https://doi.org/10.1111/jcpp.13101CrossRefGoogle ScholarPubMed
Duits, P., Cath, D. C., Lissek, S., Hox, J. J., Hamm, A. O., Engelhard, I. M., … Baas, J. M. P. (2015). Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depression and Anxiety, 32(4), 239253. https://doi.org/10.1002/da.22353CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Niv, Y., Daw, N., & Phelps, E. A. (2015). Rethinking extinction. Neuron, 88(1), 4763. https://doi.org/10.1016/j.neuron.2015.09.028CrossRefGoogle ScholarPubMed
Epskamp, S. (2018). Preliminary simulations on the interpretation of cross-sectional Gaussian graphical models. PsyArXiv. https://doi.org/10.31234/osf.io/54xrsGoogle Scholar
Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195212. https://doi.org/10.3758/s13428-017-0862-1CrossRefGoogle ScholarPubMed
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 118. https://econpapers.repec.org/article/jssjstsof/v_3a048_3ai04.htm.CrossRefGoogle Scholar
Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617634. https://doi.org/10.1037/met0000167CrossRefGoogle ScholarPubMed
Feder, A., Mota, N., Salim, R., Rodriguez, J., Singh, R., Schaffer, J., … … Pietrzak, R. H. (2016). Risk, coping and PTSD symptom trajectories in World Trade Center responders. Journal of Psychiatric Research, 82, 6879. https://doi.org/10.1016/j.jpsychires.2016.07.003CrossRefGoogle ScholarPubMed
Fritz, J., Fried, E. I., Goodyer, I. M., Wilkinson, P. O., & van Harmelen, A.-L. (2018). A network model of resilience factors for adolescents with and without exposure to childhood adversity. Scientific Reports, 8(1), 15774. https://doi.org/10.1038/s41598-018-34130-2CrossRefGoogle ScholarPubMed
Gershman, S. J., Blei, D. M., & Niv, Y. (2010). Context, learning, and extinction. Psychological Review, 117(1), 197209. https://doi.org/10.1037/a0017808CrossRefGoogle ScholarPubMed
Gershman, S. J., & Hartley, C. A. (2015). Individual differences in learning predict the return of fear. Learning & Behavior, 43(3), 243250. https://doi.org/10.3758/s13420-015-0176-zCrossRefGoogle ScholarPubMed
Gershman, S. J., Monfils, M.-H., Norman, K. A., & Niv, Y. (2017). The computational nature of memory modification. ELife, 6, e23763. https://doi.org/10.7554/eLife.23763CrossRefGoogle ScholarPubMed
Gershman, S. J., & Niv, Y. (2010). Learning latent structure: Carving nature at its joints. Current Opinion in Neurobiology, 20(2), 251256. https://doi.org/10.1016/j.conb.2010.02.008CrossRefGoogle ScholarPubMed
Gershman, S. J., & Niv, Y. (2012). Exploring a latent cause theory of classical conditioning. Learning & Behavior, 40(3), 255268. https://doi.org/10.3758/s13420-012-0080-8CrossRefGoogle ScholarPubMed
Gershman, S. J., Norman, K. A., & Niv, Y. (2015). Discovering latent causes in reinforcement learning. Current Opinion in Behavioral Sciences, 5, 4350. https://doi.org/10.1016/j.cobeha.2015.07.007CrossRefGoogle Scholar
Greene, T., Gelkopf, M., Epskamp, S., & Fried, E. (2018). Dynamic networks of PTSD symptoms during conflict. Psychological Medicine, 48(14), 24092417. https://doi.org/10.1017/S0033291718000351CrossRefGoogle ScholarPubMed
Hoffart, A., Langkaas, T. F., Øktedalen, T., & Johnson, S. U. (2019). The temporal dynamics of symptoms during exposure therapies of PTSD: A network approach. European Journal of Psychotraumatology, 10(1), 1618134. https://doi.org/10.1080/20008198.2019.1618134CrossRefGoogle ScholarPubMed
Holt, D. J., Boeke, E. A., Wolthusen, R. P. F., Nasr, S., Milad, M. R., & Tootell, R. B. H. (2014). A parametric study of fear generalization to faces and non-face objects: Relationship to discrimination thresholds. Frontiers in Human Neuroscience, 8, 624. https://doi.org/10.3389/fnhum.2014.00624CrossRefGoogle ScholarPubMed
Homan, P., Levy, I., Feltham, E., Gordon, C., Hu, J., Li, J., … Schiller, D. (2019). Neural computations of threat in the aftermath of combat trauma. Nature Neuroscience, 22(3), 470. https://doi.org/10.1038/s41593-018-0315-xCrossRefGoogle ScholarPubMed
Horn, S. R., Pietrzak, R. H., Schechter, C., Bromet, E. J., Katz, C. L., Reissman, D. B., … Feder, A. (2016). Latent typologies of posttraumatic stress disorder in World Trade Center responders. Journal of Psychiatric Research, 83, 151159. https://doi.org/10.1016/j.jpsychires.2016.08.018CrossRefGoogle ScholarPubMed
Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental Psychology, 45(3), 188196. https://doi.org/10.1037/h0056940CrossRefGoogle ScholarPubMed
Kaczkurkin, A. N., Burton, P. C., Chazin, S. M., Manbeck, A. B., Espensen-Sturges, T., Cooper, S. E., … Lissek, S. (2016). Neural substrates of overgeneralized conditioned fear in PTSD. American Journal of Psychiatry, 174(2), 125134. https://doi.org/10.1176/appi.ajp.2016.15121549CrossRefGoogle ScholarPubMed
Karam, E. G., Friedman, M. J., Hill, E. D., Kessler, R. C., McLaughlin, K. A., Petukhova, M., … … Koenen, K. C. (2014). Cumulative traumas and risk thresholds: 12-month PTSD in the world mental health (WMH) surveys. Depression and Anxiety, 31(2), 130142. https://doi.org/10.1002/da.22169CrossRefGoogle ScholarPubMed
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773795. https://doi.org/10.1080/01621459.1995.10476572CrossRefGoogle Scholar
Levy, I., & Schiller, D. (2021). Neural computations of threat. Trends in Cognitive Sciences, 25(2), 151171. https://doi.org/10.1016/j.tics.2020.11.007CrossRefGoogle ScholarPubMed
Lissek, S., & van Meurs, B. (2015). Learning models of PTSD: Theoretical accounts and psychobiological evidence. International Journal of Psychophysiology, 98(3, Part 2), 594605. https://doi.org/10.1016/j.ijpsycho.2014.11.006CrossRefGoogle ScholarPubMed
Marin, M.-F., Hammoud, M. Z., Klumpp, H., Simon, N. M., & Milad, M. R. (2020). Multimodal categorical and dimensional approaches to understanding threat conditioning and its extinction in individuals with anxiety disorders. JAMA Psychiatry, 77(6), 618627. https://doi.org/10.1001/jamapsychiatry.2019.4833CrossRefGoogle ScholarPubMed
Maruff, P., Thomas, E., Cysique, L., Brew, B., Collie, A., Snyder, P., & Pietrzak, R. H. (2009). Validity of the CogState brief battery: Relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia Complex. Archives of Clinical Neuropsychology, 24(2), 165178. https://doi.org/10.1093/arclin/acp010CrossRefGoogle ScholarPubMed
McDougle, S. D., & Collins, A. G. E. (2021). Modeling the influence of working memory, reinforcement, and action uncertainty on reaction time and choice during instrumental learning. Psychonomic Bulletin & Review, 28(1), 2030. https://doi.org/10.3758/s13423-020-01774-z.CrossRefGoogle ScholarPubMed
Moutoussis, M., Shahar, N., Hauser, T. U., & Dolan, R. J. (2018). Computation in psychotherapy, or How computational psychiatry can aid learning-based psychological therapies. Computational Psychiatry, 2, 5073. https://doi.org/10.1162/CPSY_a_00014.CrossRefGoogle ScholarPubMed
Norbury, A., Robbins, T. W., & Seymour, B. (2018). Value generalization in human avoidance learning. ELife, 7, e34779. https://doi.org/10.7554/eLife.34779.CrossRefGoogle ScholarPubMed
Nord, C. L., Prabhu, G., Nolte, T., Fonagy, P., Dolan, R., & Moutoussis, M. (2017). Vigour in active avoidance. Scientific Reports, 7(1), 60. https://doi.org/10.1038/s41598-017-00127-6CrossRefGoogle ScholarPubMed
Orederu, T., & Schiller, D. (2018). Fast and slow extinction pathways in defensive survival circuits. Current Opinion in Behavioral Sciences, 24, 96103. https://doi.org/10.1016/j.cobeha.2018.06.004CrossRefGoogle Scholar
Orne, M. T. (1962). On the social psychology of the psychological experiment: With particular reference to demand characteristics and their implications. American Psychologist, 17(11), 776783. https://doi.org/10.1037/h0043424CrossRefGoogle Scholar
Pietrzak, R. H., el-Gabalawy, R., Tsai, J., Sareen, J., Neumeister, A., & Southwick, S. M. (2014). Typologies of posttraumatic stress disorder in the U.S. adult population. Journal of Affective Disorders, 162, 102106. https://doi.org/10.1016/j.jad.2014.03.024CrossRefGoogle ScholarPubMed
Pittig, A., Wong, A. H. K., Glück, V. M., & Boschet, J. M. (2020). Avoidance and its bi-directional relationship with conditioned fear: Mechanisms, moderators, and clinical implications. Behaviour Research and Therapy, 126, 103550. https://doi.org/10.1016/j.brat.2020.103550CrossRefGoogle ScholarPubMed
Scott, J. C., Matt, G. E., Wrocklage, K. M., Crnich, C., Jordan, J., Southwick, S. M., … Schweinsburg, B. C. (2015). A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychological Bulletin, 141(1), 105140. https://doi.org/10.1037/a0038039CrossRefGoogle ScholarPubMed
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl 20), 2233.Google ScholarPubMed
Weathers, F. W., Blake, D. D., Schnurr, P. P., Kaloupek, D. G., Marx, B. P., & Keane, T. M. (2013a). Clinician-administered PTSD scale for DSM-5 (CAPS-5). Washington, DC: U.S. Department of Veterans Affairs. https://www.ptsd.va.gov/professional/assessment/adult-int/caps.asp.Google Scholar
Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B. P., & Schnurr, P. P. (2013b). The PTSD Checklist for DSM-5 (PCL-5). Washington, DC: U.S. Department of Veterans Affairs. https://www.ptsd.va.gov/professional/assessment/adult-sr/ptsd-checklist.asp.Google Scholar
Williams, M. B., Karg, R. S., & Spitzer, R. L. (2015). Structured clinical interview for DSM-5 – research version (SCID-5 for DSM-5, research version; SCID-5–RV). Arlington, VA: American Psychiatric Association.Google Scholar
Williams, D. R., Rhemtulla, M., Wysocki, A. C., & Rast, P. (2019). On nonregularized estimation of psychological networks. Multivariate Behavioral Research, 54(5), 719750. https://doi.org/10.1080/00273171.2019.1575716CrossRefGoogle ScholarPubMed
Wise, T., & Dolan, R. J. (2020). Associations between aversive learning processes and transdiagnostic psychiatric symptoms in a general population sample. Nature Communications, 11(1), 4179. https://doi.org/10.1038/s41467-020-17977-wCrossRefGoogle Scholar
Supplementary material: File

Norbury et al. supplementary material

Norbury et al. supplementary material

Download Norbury et al. supplementary material(File)
File 2.9 MB