Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T20:11:45.346Z Has data issue: false hasContentIssue false

Intergenerational effects of maternal lifetime stressor exposure on offspring telomere length in Black and White women

Published online by Cambridge University Press:  02 December 2022

Stefanie E. Mayer*
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143-0984, USA
Joanna Guan
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143-0984, USA
Jue Lin
Affiliation:
Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
Elissa Hamlat
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143-0984, USA
Jordan E. Parker
Affiliation:
Department of Psychology, University of California, Los Angeles, CA 90095, USA
Kristy Brownell
Affiliation:
School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA
Candice Price
Affiliation:
Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
Mahasin Mujahid
Affiliation:
School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA
A. Janet Tomiyama
Affiliation:
Department of Psychology, University of California, Los Angeles, CA 90095, USA
George M. Slavich
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
Barbara A. Laraia
Affiliation:
School of Public Health, University of California Berkeley, Berkeley, CA 94720, USA
Elissa S. Epel
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143-0984, USA
*
Author for correspondence: Stefanie E. Mayer, E-mail: Stefanie.Mayer@ucsf.edu

Abstract

Background

Although maternal stressor exposure has been associated with shorter telomere length (TL) in offspring, this literature is based largely on White samples. Furthermore, timing of maternal stressors has rarely been examined. Here, we examined how maternal stressors occurring during adolescence, pregnancy, and across the lifespan related to child TL in Black and White mothers.

Method

Mothers (112 Black; 110 White; Mage = 39) and their youngest offspring (n = 222; Mage = 8) were part of a larger prospective cohort study, wherein mothers reported their stressors during adolescence (assessed twice during adolescence for the past year), pregnancy (assessed in midlife for most recent pregnancy), and across their lifespan (assessed in midlife). Mother and child provided saliva for TL measurement. Multiple linear regression models examined the interaction of maternal stressor exposure and race in relation to child TL, controlling for maternal TL and child gender and age. Race-stratified analyses were also conducted.

Results

Neither maternal adolescence nor lifespan stressors interacted with race in relation to child TL. In contrast, greater maternal pregnancy stressors were associated with shorter child TL, but this effect was present for children of White but not Black mothers. Moreover, this effect was significant for financial but not social pregnancy stressors. Race-stratified models revealed that greater financial pregnancy stressors predicted shorter telomeres in offspring of White, but not Black mothers.

Conclusions

Race and maternal stressors interact and are related to biological aging across generations, but these effects are specific to certain races, stressors, and exposure time periods.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Co-senior authors.

References

Akiyama, M., Yamada, O., Hideshima, T., Yanagisawa, T., Yokoi, K., Fujisawa, K., … Anderson, K. C. (2004). TNFα induces rapid activation and nuclear translocation of telomerase in human lymphocytes. Biochemical and Biophysical Research Communications, 316(2), 528532.10.1016/j.bbrc.2004.02.080CrossRefGoogle ScholarPubMed
Allen, A. M., Wang, Y., Chae, D. H., Price, M. M., Powell, W., Steed, T. C., … Woods-Giscombe, C. L. (2019). Racial discrimination, the superwoman schema, and allostatic load: Exploring an integrative stress-coping model among African American women. Annals of the New York Academy of Sciences, 1457(1), 104127.10.1111/nyas.14188CrossRefGoogle ScholarPubMed
Ämmälä, A.-J., Vitikainen, E. I., Hovatta, I., Paavonen, J., Saarenpää-Heikkilä, O., Kylliäinen, A., … Paunio, T. (2020). Maternal stress or sleep during pregnancy are not reflected on telomere length of newborns. Scientific Reports, 10(1), 110.10.1038/s41598-020-71000-2CrossRefGoogle Scholar
Aviv, A. (2008). The epidemiology of human telomeres: Faults and promises. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 63(9), 979983.10.1093/gerona/63.9.979CrossRefGoogle ScholarPubMed
Barker, D. J. (2007). The origins of the developmental origins theory. Journal of Internal Medicine, 261(5), 412417.10.1111/j.1365-2796.2007.01809.xCrossRefGoogle ScholarPubMed
Bauer, G. R., Churchill, S. M., Mahendran, M., Walwyn, C., Lizotte, D., & Villa-Rueda, A. A. (2021). Intersectionality in quantitative research: A systematic review of its emergence and applications of theory and methods. SSM Population Health, 14, 100798.10.1016/j.ssmph.2021.100798CrossRefGoogle Scholar
Bekaert, S., De Meyer, T., Rietzschel, E. R., De Buyzere, M. L., De Bacquer, D., Langlois, M., … Cassiman, P. (2007). Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell, 6(5), 639647.10.1111/j.1474-9726.2007.00321.xCrossRefGoogle Scholar
Blackburn, E. H., Epel, E. S., & Lin, J. (2015). Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science (New York, N.Y.), 350(6265), 11931198.10.1126/science.aab3389CrossRefGoogle ScholarPubMed
Bödeker, K., Fuchs, A., Führer, D., Kluczniok, D., Dittrich, K., Reichl, C., … Möhler, E. (2019). Impact of maternal early life maltreatment and maternal history of depression on child psychopathology: Mediating role of maternal sensitivity? Child Psychiatry & Human Development, 50(2), 278290.10.1007/s10578-018-0839-zCrossRefGoogle ScholarPubMed
Broer, L., Codd, V., Nyholt, D. R., Deelen, J., Mangino, M., Willemsen, G., … De Geus, E. J. (2013). Meta-analysis of telomere length in 19 713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. European Journal of Human Genetics, 21(10), 11631168.10.1038/ejhg.2012.303CrossRefGoogle Scholar
Bronder, E. C., Speight, S. L., Witherspoon, K. M., & Thomas, A. J. (2014). John Henryism, depression, and perceived social support in Black women. Journal of Black Psychology, 40(2), 115137.10.1177/0095798412474466CrossRefGoogle Scholar
Brown, G. W., & Harris, T. (1978). Social origins of depression: A study of psychiatric disorder in women (1st American ed.). New York: Free Press.Google Scholar
Brown, L. L., Mitchell, U. A., & Ailshire, J. A. (2020). Disentangling the stress process: Race/ethnic differences in the exposure and appraisal of chronic stressors among older adults. The Journals of Gerontology: Series B, 75(3), 650660.10.1093/geronb/gby072CrossRefGoogle ScholarPubMed
Brown, L. L., Needham, B., & Ailshire, J. (2017). Telomere length among older US adults: Differences by race/ethnicity, gender, and age. Journal of Aging and Health, 29(8), 13501366.10.1177/0898264316661390CrossRefGoogle Scholar
Cao, X., Laplante, D. P., Brunet, A., Ciampi, A., & King, S. (2014). Prenatal maternal stress affects motor function in 5½-year-old children: Project ice storm. Developmental Psychobiology, 56(1), 117125.10.1002/dev.21085CrossRefGoogle ScholarPubMed
Carroll, J. E., Mahrer, N. E., Shalowitz, M., Ramey, S., & Schetter, C. D. (2020). Prenatal maternal stress prospectively relates to shorter child buccal cell telomere length. Psychoneuroendocrinology, 121, 104841.10.1016/j.psyneuen.2020.104841CrossRefGoogle ScholarPubMed
Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Research, 30(10), e47.10.1093/nar/30.10.e47CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. (2005). Phase 5 core questionnaire–pregnancy stressful life events. Pregnancy risk assessment monitoring system (PRAMS). Washington, DC: CDC. www.cdc.gov/prams/pdf/phase5_corequestions.pdf.Google Scholar
Codd, V., Denniff, M., Swinfield, C., Warner, S. C., Papakonstantinou, M., Sheth, S., … Bountziouka, V. (2021). A major population resource of 474074 participants in UK Biobank to investigate determinants and biomedical consequences of leukocyte telomere length. medRxiv.Google Scholar
Coimbra, B. M., Carvalho, C. M., Moretti, P. N., Mello, M. F., & Belangero, S. I. (2017). Stress-related telomere length in children: A systematic review. Journal of Psychiatric Research, 92, 4754.10.1016/j.jpsychires.2017.03.023CrossRefGoogle ScholarPubMed
Conradt, E., Carter, S. E., & Crowell, S. E. (2020). Biological embedding of chronic stress across two generations within marginalized communities. Child Development Perspectives, 14(4), 208214.10.1111/cdep.12382CrossRefGoogle Scholar
Danese, A., & Widom, C. S. (2020). Objective and subjective experiences of child maltreatment and their relationships with psychopathology. Nature Human Behaviour, 4(8), 811818.10.1038/s41562-020-0880-3CrossRefGoogle ScholarPubMed
Darrow, S. M., Verhoeven, J. E., Révész, D., Lindqvist, D., Penninx, B. W., Delucchi, K. L., … Mathews, C. A. (2016). The association between psychiatric disorders and telomere length: A meta-analysis involving 14,827 persons. Psychosomatic Medicine, 78(7), 776.10.1097/PSY.0000000000000356CrossRefGoogle Scholar
Enlow, M. B., Bollati, V., Sideridis, G., Flom, J. D., Hoxha, M., Hacker, M. R., & Wright, R. J. (2018). Sex differences in effects of maternal risk and protective factors in childhood and pregnancy on newborn telomere length. Psychoneuroendocrinology, 95, 7485.10.1016/j.psyneuen.2018.05.025CrossRefGoogle Scholar
Enlow, M. B., Petty, C. R., Hacker, M. R., & Burris, H. H. (2021). Maternal psychosocial functioning, obstetric health history, and newborn telomere length. Psychoneuroendocrinology, 123, 105043.10.1016/j.psyneuen.2020.105043CrossRefGoogle Scholar
Enlow, M. B., Sideridis, G., Bollati, V., Hoxha, M., Hacker, M. R., & Wright, R. J. (2019). Maternal cortisol output in pregnancy and newborn telomere length: Evidence for sex-specific effects. Psychoneuroendocrinology, 102, 225235.10.1016/j.psyneuen.2018.12.222CrossRefGoogle Scholar
Entringer, S., de Punder, K., Buss, C., & Wadhwa, P. D. (2018). The fetal programming of telomere biology hypothesis: An update. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20170151.10.1098/rstb.2017.0151CrossRefGoogle ScholarPubMed
Entringer, S., Epel, E. S., Kumsta, R., Lin, J., Hellhammer, D. H., Blackburn, E. H., … Wadhwa, P. D. (2011). Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proceedings of the National Academy of Sciences, 108(33), E513E518.10.1073/pnas.1107759108CrossRefGoogle ScholarPubMed
Entringer, S., Epel, E. S., Lin, J., Blackburn, E. H., Buss, C., Simhan, H. N., & Wadhwa, P. D. (2015). Maternal estriol concentrations in early gestation predict infant telomere length. Journal of Clinical Endocrinology & Metabolism, 100(1), 267273.10.1210/jc.2014-2744CrossRefGoogle ScholarPubMed
Entringer, S., Epel, E. S., Lin, J., Buss, C., Shahbaba, B., Blackburn, E. H., … Wadhwa, P. D. (2013). Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. American Journal of Obstetrics and Gynecology, 208(2), 134–e1.10.1016/j.ajog.2012.11.033CrossRefGoogle ScholarPubMed
Epel, E. S. (2020). Can childhood adversity affect telomeres of the next generation? Possible mechanisms, implications, and next-generation research. American Journal of Psychiatry, 177(1), 79.10.1176/appi.ajp.2019.19111161CrossRefGoogle ScholarPubMed
Epel, E. S., & Prather, A. A. (2018). Stress, telomeres, and psychopathology: Toward a deeper understanding of a triad of early aging. Annual Review of Clinical Psychology, 14, 371.10.1146/annurev-clinpsy-032816-045054CrossRefGoogle Scholar
Esteves, K. C., Jones, C. W., Wade, M., Callerame, K., Smith, A. K., Theall, K. P., & Drury, S. S. (2020). Adverse childhood experiences: Implications for offspring telomere length and psychopathology. American Journal of Psychiatry, 177(1), 4757.10.1176/appi.ajp.2019.18030335CrossRefGoogle ScholarPubMed
Factor-Litvak, P., Susser, E., Kezios, K., McKeague, I., Kark, J. D., Hoffman, M., … Aviv, A. (2016). Leukocyte telomere length in newborns: Implications for the role of telomeres in human disease. Pediatrics, 137(4), e20153927.10.1542/peds.2015-3927CrossRefGoogle ScholarPubMed
Forde, A. T., Crookes, D. M., Suglia, S. F., & Demmer, R. T. (2019). The weathering hypothesis as an explanation for racial disparities in health: A systematic review. Annals of Epidemiology, 33, 118.10.1016/j.annepidem.2019.02.011CrossRefGoogle ScholarPubMed
Franko, D., Striegel-Moore, R., Brown, K., Barton, B., McMahon, R., Schreiber, G. B., … Daniels, S. R. (2004). Expanding our understanding of the relationship between negative life events and depressive symptoms in black and white adolescent girls. Psychological Medicine, 34, 13191330.10.1017/S0033291704003186CrossRefGoogle ScholarPubMed
Gardner, M., Bann, D., Wiley, L., Cooper, R., Hardy, R., Nitsch, D., … Ben-Shlomo, Y. (2014). Gender and telomere length: Systematic review and meta-analysis. Experimental Gerontology, 51, 1527.10.1016/j.exger.2013.12.004CrossRefGoogle ScholarPubMed
Geronimus, A. T., Hicken, M. T., Pearson, J. A., Seashols, S. J., Brown, K. L., & Cruz, T. D. (2010). Do US Black women experience stress-related accelerated biological aging? Human Nature, 21(1), 1938.10.1007/s12110-010-9078-0CrossRefGoogle ScholarPubMed
Giscombé, C. L., & Lobel, M. (2005). Explaining disproportionately high rates of adverse birth outcomes among African Americans: The impact of stress, racism, and related factors in pregnancy. Psychological Bulletin, 131(5), 662.10.1037/0033-2909.131.5.662CrossRefGoogle ScholarPubMed
Guan, A., Thomas, M., Vittinghoff, E., Bowleg, L., Mangurian, C., & Wesson, P. (2021). An investigation of quantitative methods for assessing intersectionality in health research: A systematic review. SSM-Population Health, 16, 100977.10.1016/j.ssmph.2021.100977CrossRefGoogle ScholarPubMed
Hamad, R., Tuljapurkar, S., & Rehkopf, D. H. (2016). Racial and socioeconomic variation in genetic markers of telomere length: A cross-sectional study of US older adults. EBioMedicine, 11, 296301.10.1016/j.ebiom.2016.08.015CrossRefGoogle ScholarPubMed
Hardt, J., & Rutter, M. (2004). Validity of adult retrospective reports of adverse childhood experiences: Review of the evidence. Journal of Child Psychology and Psychiatry, 45(2), 260273.10.1111/j.1469-7610.2004.00218.xCrossRefGoogle ScholarPubMed
Haussmann, M. F., & Heidinger, B. J. (2015). Telomere dynamics may link stress exposure and ageing across generations. Biology Letters, 11(11), 20150396.10.1098/rsbl.2015.0396CrossRefGoogle Scholar
Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, A., & Willeit, P. (2014). Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ, 349, g4227.10.1136/bmj.g4227CrossRefGoogle ScholarPubMed
Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York, NY: Guilford publications.Google Scholar
Kaufman, J. S., & Cooper, R. S. (2008). Telomeres and race: What can we learn about human biology from health differentials? Aging Cell, 7(4), 448450.10.1111/j.1474-9726.2008.00396.xCrossRefGoogle ScholarPubMed
Keenan, K., Hipwell, A. E., Class, Q. A., & Mbayiwa, K. (2018). Extending the developmental origins of disease model: Impact of preconception stress exposure on offspring neurodevelopment. Developmental Psychobiology, 60(7), 753764.10.1002/dev.21773CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, J. K., Gouin, J.-P., Weng, N.-P., Malarkey, W. B., Beversdorf, D. Q., & Glaser, R. (2011). Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosomatic Medicine, 73(1), 16.10.1097/PSY.0b013e31820573b6CrossRefGoogle ScholarPubMed
King, S., & Laplante, D. P. (2005). The effects of prenatal maternal stress on children's cognitive development: Project ice storm. Stress (Amsterdam, Netherlands), 8(1), 3545.10.1080/10253890500108391CrossRefGoogle ScholarPubMed
Krinsley, K. E., Gallagher, J. G., Weathers, F. W., Kutter, C. J., & Kaloupek, D. G. (2003). Consistency of retrospective reporting about exposure to traumatic events. Journal of Traumatic Stress, 16(4), 399409.10.1023/A:1024474204233CrossRefGoogle ScholarPubMed
Kroenke, C. H., Pletcher, M. J., Lin, J., Blackburn, E., Adler, N., Matthews, K., & Epel, E. (2012). Telomerase, telomere length, and coronary artery calcium in black and white men in the CARDIA study. Atherosclerosis, 220(2), 506512.10.1016/j.atherosclerosis.2011.10.041CrossRefGoogle ScholarPubMed
Lazarides, C., Epel, E. S., Lin, J., Blackburn, E. H., Voelkle, M. C., Buss, C., … Entringer, S. (2019). Maternal pro-inflammatory state during pregnancy and newborn leukocyte telomere length: A prospective investigation. Brain Behavior Immunity, 80, 419426.10.1016/j.bbi.2019.04.021CrossRefGoogle ScholarPubMed
Lin, J., Epel, E., & Blackburn, E. (2012). Telomeres and lifestyle factors: Roles in cellular aging. Mutation Research, 730(1–2), 8589.10.1016/j.mrfmmm.2011.08.003CrossRefGoogle ScholarPubMed
Liu, C. H., Giallo, R., Doan, S. N., Seidman, L. J., & Tronick, E. (2016). Racial and ethnic differences in prenatal life stress and postpartum depression symptoms. Archives of Psychiatric Nursing, 30(1), 712.10.1016/j.apnu.2015.11.002CrossRefGoogle ScholarPubMed
Liu, H., Zhou, G., Chen, Q., Ouyang, F., Little, J., Zhang, J., & Chen, D. (2017). Impact of dehydroepiandrosterone sulfate on newborn leukocyte telomere length. Scientific Reports, 7, 42160.10.1038/srep42160CrossRefGoogle ScholarPubMed
Lu, M. C., & Chen, B. (2004). Racial and ethnic disparities in preterm birth: The role of stressful life events. American Journal of Obstetrics and Gynecology, 191(3), 691699.10.1016/j.ajog.2004.04.018CrossRefGoogle ScholarPubMed
Lulkiewicz, M., Bajsert, J., Kopczynski, P., Barczak, W., & Rubis, B. (2020). Telomere length: How the length makes a difference. Molecular Biology Reports, 47(9), 71817188.10.1007/s11033-020-05551-yCrossRefGoogle ScholarPubMed
Ma, H., Zhou, Z., Wei, S., Liu, Z., Pooley, K. A., Dunning, A. M., … Shen, M. (2011). Shortened telomere length is associated with increased risk of cancer: A meta-analysis. PLoS One, 6(6), e20466.10.1371/journal.pone.0020466CrossRefGoogle ScholarPubMed
Marchetto, N. M., Glynn, R. A., Ferry, M. L., Ostojic, M., Wolff, S. M., Yao, R., & Haussmann, M. F. (2016). Prenatal stress and newborn telomere length. American Journal of Obstetrics and Gynecology, 215(1), 94–e1.10.1016/j.ajog.2016.01.177CrossRefGoogle ScholarPubMed
Maughan, B., & Rutter, M. (1997). Retrospective reporting of childhood adversity: Issues in assessing long-term recall. Journal of Personality Disorders, 11(1), 1933.10.1521/pedi.1997.11.1.19CrossRefGoogle ScholarPubMed
Mayer, S. E., Prather, A. A., Puterman, E., Lin, J., Arenander, J., Coccia, M., … Epel, E. S. (2019). Cumulative lifetime stress exposure and leukocyte telomere length attrition: The unique role of stressor duration and exposure timing. Psychoneuroendocrinology, 104, 210218.10.1016/j.psyneuen.2019.03.002CrossRefGoogle ScholarPubMed
Mays, V. M., Cochran, S. D., & Barnes, N. W. (2007). Race, race-based discrimination, and health outcomes among African Americans. Annual Review of Psychology, 58, 201.10.1146/annurev.psych.57.102904.190212CrossRefGoogle ScholarPubMed
Mitchell, C., Hobcraft, J., McLanahan, S. S., Siegel, S. R., Berg, A., Brooks-Gunn, J., … Notterman, D. (2014). Social disadvantage, genetic sensitivity, and children's telomere length. Proceedings of the National Academy of Sciences, 111(16), 59445949.10.1073/pnas.1404293111CrossRefGoogle ScholarPubMed
Morrison, J. (1992). Obesity and cardiovascular disease risk factors in black and white girls: The NHLBI growth and health study. American Journal of Public Health, 82(12), 16131620.Google Scholar
Murray, C. J., Kulkarni, S. C., Michaud, C., Tomijima, N., Bulzacchelli, M. T., Iandiorio, T. J., & Ezzati, M. (2006). Eight Americas: Investigating mortality disparities across races, counties, and race-counties in the United States. PLoS Medicine, 3(9), e260.10.1371/journal.pmed.0030260CrossRefGoogle ScholarPubMed
Osler, M., Bendix, L., Rask, L., & Rod, N. H. (2016). Stressful life events and leucocyte telomere length: Do lifestyle factors, somatic and mental health, or low grade inflammation mediate this relationship? Results from a cohort of Danish men born in 1953. Brain Behavior Immunity, 58, 248253.10.1016/j.bbi.2016.07.154CrossRefGoogle ScholarPubMed
Perez, A. D., Dufault, S. M., Spears, E. C., Chae, D. H., Woods-Giscombe, C. L., & Allen, A. M. (2022). Superwoman Schema and John Henryism among African American women: An intersectional perspective on coping with racism. Social Science & Medicine, 115070.Google Scholar
Puterman, E., Gemmill, A., Karasek, D., Weir, D., Adler, N. E., Prather, A. A., & Epel, E. S. (2016). Lifespan adversity and later adulthood telomere length in the nationally representative US health and retirement study. Proceedings of the National Academy of Sciences, 113(42), E6335E6342.10.1073/pnas.1525602113CrossRefGoogle ScholarPubMed
Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385401.10.1177/014662167700100306CrossRefGoogle Scholar
Rijlaarsdam, J., Stevens, G. W., Jansen, P. W., Ringoot, A. P., Jaddoe, V. W., Hofman, A., … Tiemeier, H. (2014). Maternal childhood maltreatment and offspring emotional and behavioral problems: Maternal and paternal mechanisms of risk transmission. Child Maltreatment, 19(2), 6778.10.1177/1077559514527639CrossRefGoogle ScholarPubMed
Robinson, M. N., & Thomas Tobin, C. S. (2021). Is John Henryism a health risk or resource?: Exploring the role of culturally relevant coping for physical and mental health among Black Americans. Journal of Health and Social Behavior, 62(2), 136151.10.1177/00221465211009142CrossRefGoogle ScholarPubMed
Salvador, L., Singaravelu, G., Harley, C. B., Flom, P., Suram, A., & Raffaele, J. M. (2016). A natural product telomerase activator lengthens telomeres in humans: A randomized, double blind, and placebo controlled study. Rejuvenation Research, 19(6), 478484.10.1089/rej.2015.1793CrossRefGoogle ScholarPubMed
Selvaraju, V., Phillips, M., Fouty, A., Babu, J. R., & Geetha, T. (2021). Telomere length as a biomarker for race-related health disparities. Genes, 12(1), 78.10.3390/genes12010078CrossRefGoogle ScholarPubMed
Send, T. S., Gilles, M., Codd, V., Wolf, I., Bardtke, S., Streit, F., … Sütterlin, M. W. (2017). Telomere length in newborns is related to maternal stress during pregnancy. Neuropsychopharmacology, 42(12), 24072413.10.1038/npp.2017.73CrossRefGoogle ScholarPubMed
Shenassa, E. D., Rossen, L. M., Cohen, J., Morello-Frosch, R., & Payne-Sturges, D. C. (2017). Income inequality and US children's secondhand smoke exposure: Distinct associations by race–ethnicity. Nicotine & Tobacco Research, 19(11), 12921299.Google ScholarPubMed
Slavich, G. M., & Auerbach, R. P. (2018). Stress and its sequelae: depression, suicide, inflammation, and physical illness.Google Scholar
Slavich, G. M., & Shields, G. S. (2018). Assessing lifetime stress exposure using the stress and adversity inventory for adults (Adult STRAIN): An overview and initial validation. Psychosomatic Medicine, 80(1), 1727.10.1097/PSY.0000000000000534CrossRefGoogle ScholarPubMed
Slykerman, R. F., Joglekar, M. V., Hardikar, A. A., Satoor, S. N., Thompson, J. M., Jenkins, A., … Murphy, R. (2019). Maternal stress during pregnancy and small for gestational age birthweight are not associated with telomere length at 11 years of age. Gene, 694, 97101.10.1016/j.gene.2019.01.017CrossRefGoogle Scholar
Sternthal, M. J., Slopen, N., & Williams, D. R. (2011). Racial disparities in health: How much does stress really matter? Du Bois Review, 8(1), 95113.10.1017/S1742058X11000087CrossRefGoogle ScholarPubMed
Stout, S. A., Lin, J., Hernandez, N., Davis, E. P., Blackburn, E., Carroll, J. E., & Glynn, L. M. (2017). Validation of minimally-invasive sample collection methods for measurement of telomere length. Frontiers in Aging Neuroscience, 9, 397.10.3389/fnagi.2017.00397CrossRefGoogle ScholarPubMed
Turner, R. J. (2013). Understanding health disparities: The relevance of the stress process model. Society and Mental Health, 3(3), 170186.10.1177/2156869313488121CrossRefGoogle Scholar
Verner, G., Epel, E., Lahti-Pulkkinen, M., Kajantie, E., Buss, C., Lin, J., … Entringer, S. (2021). Maternal psychological resilience during pregnancy and newborn telomere length: A prospective study. American Journal of Psychiatry, 178(2), 183192.10.1176/appi.ajp.2020.19101003CrossRefGoogle ScholarPubMed
Williams, A. D., Shenassa, E., Slopen, N., & Rossen, L. (2018). Cardiometabolic dysfunction among US adolescents and area-level poverty: Race/ethnicity-specific associations. Journal of Adolescent Health, 63(5), 546553.10.1016/j.jadohealth.2018.07.003CrossRefGoogle ScholarPubMed
Williams, D. R., & Mohammed, S. A. (2009). Discrimination and racial disparities in health: Evidence and needed research. Journal of Behavioral Medicine, 32(1), 2047.10.1007/s10865-008-9185-0CrossRefGoogle ScholarPubMed
Woods-Giscombé, C. L. (2010). Superwoman schema: African American women's views on stress, strength, and health. Qualitative Health Research, 20(5), 668683.10.1177/1049732310361892CrossRefGoogle ScholarPubMed
Woods-Giscombé, C. L., Allen, A. M., Black, A. R., Steed, T. C., Li, Y., & Lackey, C. (2019). The Giscombe superwoman schema questionnaire: Psychometric properties and associations with mental health and health behaviors in African American women. Issues in Mental Health Nursing, 2019, 116.Google Scholar
Wu, E. (2021). Learning from “racism, not race” for intersectionality research and the research enterprise. Social Work Research, 45(3), 220224.10.1093/swr/svab014CrossRefGoogle Scholar
Zhao, Z., Pan, X., Liu, L., & Liu, N. (2014). Telomere length maintenance, shortening, and lengthening. Journal of Cellular Physiology, 229(10), 13231329.10.1002/jcp.24537CrossRefGoogle ScholarPubMed
Supplementary material: File

Mayer et al. supplementary material

Mayer et al. supplementary material

Download Mayer et al. supplementary material(File)
File 70.1 KB