Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:47:12.624Z Has data issue: false hasContentIssue false

The interactive association of adverse childhood experiences and polygenic susceptibility with depressive symptoms and chronic inflammation in older adults: a prospective cohort study

Published online by Cambridge University Press:  05 August 2021

Eleonora Iob*
Affiliation:
Research Department of Behavioural Science and Health, Institute of Epidemiology and Healthcare, University College London, London, UK
Olesya Ajnakina
Affiliation:
Research Department of Behavioural Science and Health, Institute of Epidemiology and Healthcare, University College London, London, UK Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
Andrew Steptoe
Affiliation:
Research Department of Behavioural Science and Health, Institute of Epidemiology and Healthcare, University College London, London, UK
*
Author for correspondence: Eleonora Iob, E-mail: eleonora.iob.17@ucl.ac.uk

Abstract

Background

Adverse childhood experiences (ACEs) and genetic liability are important risk factors for depression and inflammation. However, little is known about the gene−environment (G × E) mechanisms underlying their aetiology. For the first time, we tested the independent and interactive associations of ACEs and polygenic scores of major depressive disorder (MDD-PGS) and C-reactive protein (CRP-PGS) with longitudinal trajectories of depression and chronic inflammation in older adults.

Methods

Data were drawn from the English longitudinal study of ageing (N~3400). Retrospective information on ACEs was collected in wave3 (2006/07). We calculated a cumulative risk score of ACEs and also assessed distinct dimensions separately. Depressive symptoms were ascertained on eight occasions, from wave1 (2002/03) to wave8 (2016/17). CRP was measured in wave2 (2004/05), wave4 (2008/09), and wave6 (2012/13). The associations of the risk factors with group-based depressive-symptom trajectories and repeated exposure to high CRP (i.e. ⩾3 mg/L) were tested using multinomial and ordinal logistic regression.

Results

All types of ACEs were independently associated with high depressive-symptom trajectories (OR 1.44, 95% CI 1.30–1.60) and inflammation (OR 1.08, 95% CI 1.07–1.09). The risk of high depressive-symptom trajectories (OR 1.47, 95% CI 1.28–1.70) and inflammation (OR 1.03, 95% CI 1.01–1.04) was also higher for participants with higher MDD-PGS. G×E analyses revealed that the associations between ACEs and depressive symptoms were larger among participants with higher MDD-PGS (OR 1.13, 95% CI 1.04–1.23). ACEs were also more strongly related to inflammation in participants with higher CRP-PGS (OR 1.02, 95% CI 1.01–1.03).

Conclusions

ACEs and polygenic susceptibility were independently and interactively associated with elevated depressive symptoms and chronic inflammation, highlighting the clinical importance of assessing both ACEs and genetic risk factors to design more targeted interventions.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: APA.Google Scholar
Andresen, E. M., Malmgren, J. A., Carter, W. B., & Patrick, D. L. (1994). Screening for depression in well older adults: Evaluation of a short form of the CES-D. American Journal of Preventive Medicine, 10(2), 7784. https://doi.org/10.1016/S0749-3797(18)30622-6.CrossRefGoogle Scholar
Assary, E., Vincent, J. P., Keers, R., & Pluess, M. (2018). Gene-environment interaction and psychiatric disorders: Review and future directions. Seminars in Cell and Developmental Biology, 77, 133143. https://doi.org/10.1016/j.semcdb.2017.10.016.CrossRefGoogle ScholarPubMed
Aziz, N., Fahey, J. L., Detels, R., & Butch, A. W. (2003). Analytical performance of a highly sensitive C-reactive protein-based immunoassay and the effects of laboratory variables on levels of protein in blood. Clinical and Diagnostic Laboratory Immunology, 10(4), 652657. https://doi.org/10.1128/CDLI.10.4.652-657.2003.Google ScholarPubMed
Banks, J., Brugiavini, A., & Pasini, G. (2020). The powerful combination of cross-country comparisons and life-history data. The Journal of the Economics of Ageing, 16(September 2019), 100206. https://doi.org/10.1016/j.jeoa.2019.100206.CrossRefGoogle ScholarPubMed
Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M., & Mondelli, V. (2015). Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Molecular Psychiatry, 21, 642649. https://doi.org/10.1038/mp.2015.67.CrossRefGoogle ScholarPubMed
Bienvenu, O. J., Davydow, D. S., & Kendler, K. S. (2011). Psychiatric ‘diseases’ versus behavioral disorders and degree of genetic influence. Psychological Medicine, 41(1), 3340. https://doi.org/10.1017/S003329171000084X.CrossRefGoogle ScholarPubMed
Caspi, A. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science (New York, N.Y.), 301(5631), 386389. https://doi.org/10.1126/science.1083968.CrossRefGoogle ScholarPubMed
Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in Medicine, 19(22), 31273131. https://doi.org/10.1002/1097-0258(20001130)19:22<3127::AID-SIM784>3.0.CO;2-M.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Cicchetti, D., Handley, E. D., & Rogosch, F. A. (2015). Child maltreatment, inflammation, and internalizing symptoms: Investigating the roles of C-reactive protein, gene variation, and neuroendocrine regulation. Development and Psychopathology, 27(2), 553566. https://doi.org/10.1017/S0954579415000152.CrossRefGoogle ScholarPubMed
Cohen-Woods, S., Fisher, H. L., Ahmetspahic, D., Douroudis, K., Stacey, D., Hosang, G. M., … McGuffin, P. (2018). Interaction between childhood maltreatment on immunogenetic risk in depression: Discovery and replication in clinical case-control samples. Brain, Behavior, and Immunity, 67, 203210. https://doi.org/10.1016/j.bbi.2017.08.023.CrossRefGoogle ScholarPubMed
Colodro-Conde, L., Couvy-Duchesne, B., Zhu, G., Coventry, W. L., Byrne, E. M., Gordon, S., … Martin, N. G. (2018). A direct test of the diathesis–stress model for depression. Molecular Psychiatry, 23(7), 15901596. https://doi.org/10.1038/mp.2017.130.CrossRefGoogle ScholarPubMed
Crosswell, A. D., Suresh, M., Puterman, E., Gruenewald, T. L., Lee, J., & Epel, E. S. (2020). Advancing research on psychosocial stress and aging with the health and retirement study: Looking back to launch the field forward. The Journals of Gerontology: Series B, 75(5), 970980. https://doi.org/10.1093/geronb/gby106.CrossRefGoogle ScholarPubMed
Culverhouse, R. C., Saccone, N. L., Horton, A. C., Ma, Y., Anstey, K. J., Banaschewski, T., … Bierut, L. J. (2018). Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Molecular Psychiatry, 23(1), 133142. https://doi.org/10.1038/mp.2017.44.CrossRefGoogle Scholar
Danese, A., & Baldwin, J. R. (2017). Hidden wounds? Inflammatory links between childhood trauma and psychopathology. Annual Review of Psychology, 68(1), 517544. https://doi.org/10.1146/annurev-psych-010416-044208.CrossRefGoogle ScholarPubMed
Danielson, R., & Sanders, G. F. (2018). An effective measure of childhood adversity that is valid with older adults. Child Abuse & Neglect, 82, 156167. https://doi.org/10.1016/j.chiabu.2018.05.028.CrossRefGoogle ScholarPubMed
de Craen, A. J. M., Posthuma, D., Remarque, E. J., van den Biggelaar, A. H. J., Westendorp, R. G. J., & Boomsma, D. I. (2005). Heritability estimates of innate immunity: An extended twin study. Genes and Immunity, 6(2), 167170. https://doi.org/10.1038/sj.gene.6364162.CrossRefGoogle ScholarPubMed
Demakakos, P., Chrousos, G. P., & Biddulph, J. P. (2018). Childhood experiences of parenting and cancer risk at older ages: Findings from the English longitudinal study of ageing (ELSA). International Journal of Public Health, 63(7), 823832. https://doi.org/10.1007/s00038-018-1117-3.CrossRefGoogle ScholarPubMed
Demakakos, P., Lewer, D., Jackson, S. E., & Hayward, A. C. (2020). Lifetime prevalence of homelessness in housed people aged 55–79 years in England: Its childhood correlates and association with mortality over 10 years of follow-up. Public Health, 182, 131138. https://doi.org/10.1016/j.puhe.2019.12.017.CrossRefGoogle ScholarPubMed
Demakakos, P., Linara-Demakakou, E., & Mishra, G. D. (2020). Adverse childhood experiences are associated with increased risk of miscarriage in a national population-based cohort study in England. Human Reproduction, 35(6), 14511460. https://doi.org/10.1093/humrep/deaa113.CrossRefGoogle Scholar
Demakakos, P., Pashayan, N., Chrousos, G., Linara-Demakakou, E., & Mishra, G. D. (2019). Childhood experiences of parenting and age at menarche, age at menopause and duration of reproductive lifespan: Evidence from the English longitudinal study of ageing. Maturitas, 122, 6672. https://doi.org/10.1016/j.maturitas.2019.01.010.CrossRefGoogle ScholarPubMed
Demakakos, P., Pillas, D., Marmot, M., & Steptoe, A. (2016). Parenting style in childhood and mortality risk at older ages: A longitudinal cohort study. The British Journal of Psychiatry, 209(2), 135141. https://doi.org/10.1192/bjp.bp.115.163543.CrossRefGoogle Scholar
Doumatey, A. P., Zhou, J., Adeyemo, A., & Rotimi, C. (2014). High sensitivity C-reactive protein (Hs-CRP) remains highly stable in long-term archived human serum. Clinical Biochemistry, 47(4–5), 315318. https://doi.org/10.1016/j.clinbiochem.2013.12.014.CrossRefGoogle ScholarPubMed
Enache, D., Pariante, C. M., & Mondelli, V. (2019). Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain, Behavior, and Immunity, 81, 2440. https://doi.org/10.1016/j.bbi.2019.06.015.CrossRefGoogle ScholarPubMed
Euesden, J., Lewis, C. M., & O'Reilly, P. F. (2015). PRSice: Polygenic risk score software. Bioinformatics (Oxford, England), 31(9), 14661468. https://doi.org/10.1093/bioinformatics/btu848.Google ScholarPubMed
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., … Marks, J. S. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. American Journal of Preventive Medicine, 14(4), 245258. https://doi.org/10.1016/S0749-3797(98)00017-8.CrossRefGoogle ScholarPubMed
Gallagher, D., Kiss, A., Lanctot, K., & Herrmann, N. (2017). Depression with inflammation: Longitudinal analysis of a proposed depressive subtype in community dwelling older adults. International Journal of Geriatric Psychiatry, 32(12), e18e24. https://doi.org/10.1002/gps.4645.CrossRefGoogle ScholarPubMed
Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., & Kivimäki, M. (2015). Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity, 49, 206215. https://doi.org/10.1016/j.bbi.2015.06.001.CrossRefGoogle ScholarPubMed
Halldorsdottir, T., Piechaczek, C., Paula Soares de Matos, A., Czamara, D., Pehl, V., Wagenbuechler, P., … Binder, E. B. (2019). Polygenic risk: Predicting depression outcomes in clinical and epidemiological cohorts of youths. American Journal of Psychiatry, 176, 615625. https://doi.org/10.1176/appi.ajp.2019.18091014.CrossRefGoogle ScholarPubMed
Howard, D. M., Adams, M. J., Clarke, T. K., Hafferty, J. D., Gibson, J., Shirali, M., … McIntosh, A. M. (2019). Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 22(3), 343352. https://doi.org/10.1038/s41593-018-0326-7.CrossRefGoogle ScholarPubMed
Hughes, K., Bellis, M. A., Hardcastle, K. A., Sethi, D., Butchart, A., Mikton, C., … Dunne, M. P. (2017). The effect of multiple adverse childhood experiences on health: A systematic review and meta-analysis. The Lancet Public Health, 2(8), e356e366. https://doi.org/10.1016/S2468-2667(17)30118-4.CrossRefGoogle Scholar
Hughes, K., Ford, K., Kadel, R., Sharp, C. A., & Bellis, M. A. (2020). Health and financial burden of adverse childhood experiences in England and Wales: A combined primary data study of five surveys. BMJ Open, 10(6), e036374. https://doi.org/10.1136/bmjopen-2019-036374.CrossRefGoogle Scholar
Iob, E., Lacey, R., & Steptoe, A. (2019). The long-term association of adverse childhood experiences with C-reactive protein and hair cortisol: Cumulative risk versus dimensions of adversity. Brain, Behavior, and Immunity, 87, 318328. https://doi.org/10.1016/j.bbi.2019.12.019.CrossRefGoogle ScholarPubMed
Iob, E., Lacey, R., & Steptoe, A. (2020). Adverse childhood experiences and depressive symptoms in later life: Longitudinal mediation effects of inflammation. Brain, Behavior, and Immunity, 90, 97107. https://doi.org/10.1016/j.bbi.2020.07.045.CrossRefGoogle ScholarPubMed
Jivraj, S., Goodman, A., Ploubidis, G. B., & de Oliveira, C. (2020). Testing comparability between retrospective life history data and prospective birth cohort study data. The Journals of Gerontology: Series B, 75(1), 207217. https://doi.org/10.1093/geronb/gbx042.CrossRefGoogle ScholarPubMed
Karg, K., Burmeister, M., Shedden, K., & Sen, S. (2011). The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Archives of General Psychiatry, 68(5), 444454. https://doi.org/10.1001/archgenpsychiatry.2010.189.CrossRefGoogle ScholarPubMed
Karim, J., Weisz, R., Bibi, Z., & ur Rehman, S. (2015). Validation of the eight-item center for epidemiologic studies depression scale (CES-D) among older adults. Current Psychology, 34(4), 681692. https://doi.org/10.1007/s12144-014-9281-y.CrossRefGoogle Scholar
Kessler, R. C., & Bromet, E. J. (2013). The epidemiology of depression across cultures. Annual Review of Public Health, 34(1), 119138. https://doi.org/10.1146/annurev-publhealth-031912-114409.CrossRefGoogle ScholarPubMed
Lacey, R. E., Pinto Pereira, S. M., Li, L., & Danese, A. (2020). Adverse childhood experiences and adult inflammation: Single adversity, cumulative risk and latent class approaches. Brain, Behavior, and Immunity, 87, 820830. https://doi.org/10.1016/j.bbi.2020.03.017.CrossRefGoogle ScholarPubMed
Lamers, F., Milaneschi, Y., Smit, J. H., Schoevers, R. A., Wittenberg, G., & Penninx, B. W. J. H. (2019). Longitudinal association between depression and inflammatory markers: Results from the Netherlands study of depression and anxiety. Biological Psychiatry, 85(10), 829837. https://doi.org/10.1016/j.biopsych.2018.12.020.CrossRefGoogle ScholarPubMed
Lehto, K., Hägg, S., Lu, D., Karlsson, R., Pedersen, N. L., & Mosing, M. A. (2020). Childhood adoption and mental health in adulthood: The role of gene-environment correlations and interactions in the UK Biobank. Biological Psychiatry, 87(8), 708716. https://doi.org/10.1016/j.biopsych.2019.10.016.CrossRefGoogle ScholarPubMed
Ligthart, S., Vaez, A., Võsa, U., Stathopoulou, M. G., de Vries, P. S., Prins, B. P., … Slagboom, E. P. (2018). Genome analyses of >200 000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. The American Journal of Human Genetics, 103(5), 691706. https://doi.org/10.1016/j.ajhg.2018.09.009.CrossRefGoogle ScholarPubMed
Mac Giollabhui, N., Ellman, L. M., Coe, C. L., Byrne, M. L., Abramson, L. Y., & Alloy, L. B. (2020). To exclude or not to exclude: Considerations and recommendations for C-reactive protein values higher than 10 mg/L. Brain, Behavior, and Immunity, 87, 898900. https://doi.org/10.1016/j.bbi.2020.01.023.CrossRefGoogle ScholarPubMed
McLaughlin, K. A. (2016). Future directions in childhood adversity and youth psychopathology. Journal of Clinical Child & Adolescent Psychology, 45(3), 361382. https://doi.org/10.1080/15374416.2015.1110823.CrossRefGoogle ScholarPubMed
McLaughlin, K. A., & Sheridan, M. A. (2016). Beyond cumulative risk: A dimensional approach to childhood adversity. Current Directions in Psychological Science, 25(4), 239245. https://doi.org/10.1177/0963721416655883.CrossRefGoogle Scholar
Milaneschi, Y., Lamers, F., Peyrot, W. J., Abdellaoui, A., Willemsen, G., Hottenga, J. J., … Penninx, B. W. J. H. (2016). Polygenic dissection of major depression clinical heterogeneity. Molecular Psychiatry, 21(4), 516522. https://doi.org/10.1038/mp.2015.86.CrossRefGoogle ScholarPubMed
Mullins, N., Power, R. A., Fisher, H. L., Hanscombe, K. B., Euesden, J., Iniesta, R., … Lewis, C. M. (2016). Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. Psychological Medicine, 46(4), 759770. https://doi.org/10.1017/S0033291715002172.CrossRefGoogle ScholarPubMed
Nanni, V., Uher, R., & Danese, A. (2012). Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: A meta-analysis. American Journal of Psychiatry, 169(2), 141151. https://doi.org/10.1176/appi.ajp.2011.11020335.CrossRefGoogle ScholarPubMed
O'Shea, B. Q., Demakakos, P., Cadar, D., & Kobayashi, L. C. (2021). Adverse childhood experiences and rate of memory decline from mid to later life: Evidence from the English longitudinal study of ageing. American Journal of Epidemiology, 190(7), 12941305. https://doi.org/10.1093/aje/kwab019.CrossRefGoogle ScholarPubMed
Parker, G., Tupling, H., & Brown, L. B. (1979). A parental bonding instrument. British Journal of Medical Psychology, 52(1), 110. https://doi.org/10.1111/j.2044-8341.1979.tb02487.x.CrossRefGoogle Scholar
Pearson, T. A., Mensah, G. A., Alexander, R. W., Anderson, J. L., Cannon, R. O., Criqui, M., … Vinicor, F. (2003). Markers of inflammation and cardiovascular disease. Circulation, 107(3), 499511. https://doi.org/10.1161/01.CIR.0000052939.59093.45.CrossRefGoogle Scholar
Peyrot, W. J., Van der Auwera, S., Milaneschi, Y., Dolan, C. V., Madden, P. A. F., Sullivan, P. F., … Sullivan, P. F. (2018). Does childhood trauma moderate polygenic risk for depression? A meta-analysis of 5765 subjects from the psychiatric genomics consortium. Biological Psychiatry, 84(2), 138147. https://doi.org/10.1016/j.biopsych.2017.09.009.CrossRefGoogle ScholarPubMed
Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385401. https://journals.sagepub.com/doi/pdf/10.1177/014662167700100306.CrossRefGoogle Scholar
Royal College of Psychiatrists (2018). Suffering in silence: Age inequality in older people's mental health care. London, UK: Author. https://www.rcpsych.ac.uk/docs/default-source/improving-care/better-mh-policy/college-reports/college-report-cr221.pdf?sfvrsn=bef8f65d_2.Google Scholar
Ruotsalainen, S. E., Partanen, J. J., Cichonska, A., Lin, J., Benner, C., Surakka, I., … Koskela, J. (2020). An expanded analysis framework for multivariate GWAS connects inflammatory biomarkers to functional variants and disease. European Journal of Human Genetics, 29(2), 309324. https://doi.org/10.1038/s41431-020-00730-8.CrossRefGoogle Scholar
Sugden, K., Danese, A., Shalev, I., Williams, B. S., & Caspi, A. (2015). Blood substrate collection and handling procedures under pseudo-field conditions: Evaluation of suitability for inflammatory biomarker measurement. Biodemography and Social Biology, 61(3), 273284. https://doi.org/10.1080/19485565.2015.1062717.CrossRefGoogle ScholarPubMed
Turvey, C. L., Wallace, R. B., & Herzog, R. (1999). A revised CES-D measure of depressive symptoms and a DSM-based measure of major depressive episodes in the elderly. International Psychogeriatrics, 11(2), 139148. https://doi.org/10.1017/S1041610299005694.CrossRefGoogle Scholar
VanderWeele, T. J., & Ding, P. (2017). Sensitivity analysis in observational research: Introducing the E-value. Annals of Internal Medicine, 167(4), 268274. https://doi.org/10.7326/M16-2607.CrossRefGoogle ScholarPubMed
VanderWeele, T. J., & Knol, M. J. (2014). A tutorial on interaction. Epidemiologic Methods, 3(1), 3372. https://doi.org/10.1515/em-2013-0005.CrossRefGoogle Scholar
Ward, K., Medina, J., Mo, M., & Cox, K. (2009). ELSA wave three: Life history interview. A user guide to the data. National Centre for Social Research. https://www.ifs.org.uk/elsa/user_guides/Wave_3_Life_History_User_Guide.pdf.Google Scholar
White, J., Zaninotto, P., Walters, K., Kivimäki, M., Demakakos, P., Biddulph, J., … Batty, G. D. (2016). Duration of depressive symptoms and mortality risk: The English longitudinal study of ageing (ELSA). British Journal of Psychiatry, 208(4), 337342. https://doi.org/10.1192/bjp.bp.114.155333.CrossRefGoogle ScholarPubMed
Wray, N. R., Lee, S. H., Mehta, D., Vinkhuyzen, A. A. E., Dudbridge, F., & Middeldorp, C. M. (2014). Research review: Polygenic methods and their application to psychiatric traits. Journal of Child Psychology and Psychiatry, 55(10), 10681087. https://doi.org/10.1111/jcpp.12295.CrossRefGoogle ScholarPubMed
Zaninotto, P., & Steptoe, A. (2019). English longitudinal study of ageing. In Gu, Danan, & Dupre, Matthew E. (Eds.), Encyclopedia of gerontology and population aging (pp. 17). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-69892-2_335-1.Google Scholar
Zivin, K., Llewellyn, D. J., Lang, I. A., Vijan, S., Kabeto, M. U., Miller, E. M., … Langa, K. M. (2010). Depression among older adults in the United States and England. American Journal of Geriatric Psychiatry, 18(11), 10361044. https://doi.org/10.1097/JGP.0b013e3181dba6d2.CrossRefGoogle ScholarPubMed
Supplementary material: File

Iob et al. supplementary material

Iob et al. supplementary material

Download Iob et al. supplementary material(File)
File 217.9 KB