Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T07:53:18.193Z Has data issue: false hasContentIssue false

Inhibitory control of positive and negative information and adolescent depressive symptoms: a population-based cohort study

Published online by Cambridge University Press:  17 July 2020

Gemma Lewis*
Affiliation:
Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
Katherine S. Button
Affiliation:
Department of Psychology, University of Bath, Bath, UK
Rebecca M. Pearson
Affiliation:
Population Health Sciences, University of Bristol, Bristol, UK
Marcus R. Munafò
Affiliation:
School of Psychological Science, University of Bristol, Bristol, UK MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
Glyn Lewis*
Affiliation:
Division of Psychiatry, Faculty of Brain Sciences, University College London, London, UK
*
Author for correspondence: Gemma Lewis, E-mail: gemma.lewis@ucl.ac.uk
Author for correspondence: Gemma Lewis, E-mail: gemma.lewis@ucl.ac.uk

Abstract

Background

Large population-based cohort studies of neuropsychological factors that characterise or precede depressive symptoms are rare. Most studies use small case-control or cross-sectional designs, which may cause selection bias and cannot test temporality. In a large UK population-based cohort, we investigated cross-sectional and longitudinal associations between inhibitory control of positive and negative information and adolescent depressive symptoms.

Methods

Cohort study of 2328 UK adolescents who completed an affective go/no-go task at age 18. Depressive symptoms were assessed with the Clinical Interview Schedule Revised (CIS-R) and short Mood and Feeling Questionnaire (sMFQ) at age 18, and with the sMFQ 1 year later (age 19). Analyses were multilevel and traditional linear regressions, before and after adjusting for confounders.

Results

Cross-sectionally, we found little evidence that adolescents with more depressive symptoms made more inhibitory control errors [after adjustments, errors increased by 0.04% per 1 s.d. increase in sMFQ score (95% confidence interval 0.02–0.06)], but this association was not observed for the CIS-R. There was no evidence for an influence of valence. Longitudinally, there was no evidence that reduced inhibitory control was associated with future depressive symptoms.

Conclusions

Inhibitory control of positive and negative information does not appear to be a marker of current or future depressive symptoms in adolescents and would not be a useful target in interventions to prevent adolescent depression. Our lack of convincing evidence for associations with depressive symptoms suggests that the affective go/no-go task is not a promising candidate for future neuroimaging studies of adolescent depression.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A., Henderson, J., … Davey Smith, G. (2013). Cohort profile: The ‘children of the 90s’ – the index offspring of the Avon longitudinal study of parents and children. International Journal of Epidemiology, 42(1), 111127. https://doi.org/10.1093/ije/dys064CrossRefGoogle ScholarPubMed
Brookes, S. T., Whitely, E., Egger, M., Smith, G. D., Mulheran, P. A., & Peters, T. J. (2004). Subgroup analyses in randomized trials: Risks of subgroup-specific analyses. Journal of Clinical Epidemiology, 57(3), 229236. https://doi.org/10.1016/j.jclinepi.2003.08.009CrossRefGoogle ScholarPubMed
Burbidge, J. B., Magee, L., & Robb, A. L. (1988). Alternative transformations to handle extreme values of the dependent variable. Journal of the American Statistical Association, 83(401), 123. https://doi.org/10.2307/2288929CrossRefGoogle Scholar
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Confidence and precision increase with high statistical power. Nature Reviews. Neuroscience, 14(8), 585586. https://doi.org/10.1038/nrn3475-c4CrossRefGoogle ScholarPubMed
Diamond, A., & Adele, B. Y. (2013). Executive functions. Annual Review of Psychology, 64, 135168. https://doi.org/10.1146/annurev-psych-113011-143750CrossRefGoogle ScholarPubMed
Elliott, R., Rubinsztein, J. S., Sahakian, B. J., & Dolan, R. J. (2002). The neural basis of mood-congruent processing biases in depression. Archives of General Psychiatry, 59(7), 597604. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12090812CrossRefGoogle ScholarPubMed
Erickson, K., Drevets, W. C., Clark, L., Cannon, D. M., Bain, E. E., Zarate, C. A., … Sahakian, B. J. (2005). Mood-congruent bias in affective go/no-go performance of unmedicated patients with major depressive disorder. American Journal of Psychiatry, 162(11), 21712173. https://doi.org/10.1176/appi.ajp.162.11.2171CrossRefGoogle ScholarPubMed
Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey Smith, G., … Lawlor, D. A. (2013). Cohort profile: The Avon longitudinal study of parents and children: ALSPAC mothers cohort. International Journal of Epidemiology, 42(1), 97110. https://doi.org/10.1093/ije/dys066CrossRefGoogle ScholarPubMed
Furman, D. J., Hamilton, J. P., & Gotlib, I. H. (2011). Frontostriatal functional connectivity in major depressive disorder. Biology of Mood & Anxiety Disorders, 1(1), 11. https://doi.org/10.1186/2045-5380-1-11CrossRefGoogle ScholarPubMed
Geraldo, A., Azeredo, A., Pasion, R., Dores, A. R., & Barbosa, F. (2019). Fostering advances to neuropsychological assessment based on the Research Domain Criteria: The bridge between cognitive functioning and physiology. Clinical Neuropsychologist, 33(2), 327356. https://doi.org/10.1080/13854046.2018.1523467CrossRefGoogle Scholar
Hamilton, J. P., Chen, G., Thomason, M. E., Schwartz, M. E., & Gotlib, I. H. (2011). Investigating neural primacy in major depressive disorder: Multivariate granger causality analysis of resting-state fMRI time-series data. Molecular Psychiatry, 16(7), 763772. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20479758CrossRefGoogle ScholarPubMed
Kilford, E. J., Foulkes, L., Potter, R., Collishaw, S., Thapar, A., & Rice, F. (2015). Affective bias and current, past and future adolescent depression: A familial high risk study. Journal of Affective Disorders, 174, 265271. https://doi.org/10.1016/j.jad.2014.11.046CrossRefGoogle ScholarPubMed
Kyte, Z. A., Goodyer, I. M., & Sahakian, B. J. (2005). Selected executive skills in adolescents with recent first episode major depression. Journal of Child Psychology and Psychiatry, 46(9), 9951005. https://doi.org/10.1111/j.1469-7610.2004.00400.xCrossRefGoogle ScholarPubMed
LeWinn, K. Z., Sheridan, M. A., Keyes, K. M., Hamilton, A., & McLaughlin, K. A. (2017). Sample composition alters associations between age and brain structure. Nature Communications, 8(1), 874. https://doi.org/10.1038/s41467-017-00908-7CrossRefGoogle ScholarPubMed
Lewis, G., Pelosi, A. J., Araya, R., & Dunn, G. (1992). Measuring psychiatric disorder in the community: A standardized assessment for use by lay interviewers. Psychological Medicine, 22(02), 465. https://doi.org/10.1017/S0033291700030415CrossRefGoogle ScholarPubMed
Maalouf, F. T., Clark, L., Tavitian, L., Sahakian, B. J., Brent, D., & Phillips, M. L. (2012). Bias to negative emotions: A depression state-dependent marker in adolescent major depressive disorder. Psychiatry Research, 198(1), 2833. https://doi.org/10.1016/j.psychres.2012.01.030CrossRefGoogle ScholarPubMed
Murphy, F. C., Sahakian, B. J., Rubinsztein, J. S., Michael, A., Rogers, R. D., Robbins, T. W., & Paykel, E. S. (1999). Emotional bias and inhibitory control processes in mania and depression. Psychological Medicine, 29(6), 13071321.CrossRefGoogle ScholarPubMed
Netsi, E., Pearson, R. M., Murray, L., Cooper, P., Craske, M. G., & Stein, A. (2018). Association of persistent and severe postnatal depression with child outcomes. JAMA Psychiatry, 75(3), 247. https://doi.org/10.1001/jamapsychiatry.2017.4363CrossRefGoogle ScholarPubMed
Owens, M., Goodyer, I. M., Wilkinson, P., Bhardwaj, A., Abbott, R., Croudace, T., … Sahakian, B. J. (2012). 5-HTTLPR and early childhood adversities moderate cognitive and emotional processing in adolescence. PLoS ONE, 7(11), e48482. https://doi.org/10.1371/journal.pone.0048482CrossRefGoogle ScholarPubMed
Roiser, J. P., & Sahakian, B. J. (2013). Hot and cold cognition in depression. CNS Spectrums, 18(03), 139149. https://doi.org/10.1017/S1092852913000072CrossRefGoogle ScholarPubMed
Rothman, K., Greenland, S., & Lash, T. (2013). Modern epidemiology (3rd edn). Philadelphia: Lippincott, Williams and Wilkins.Google Scholar
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology. Psychological Science, 22(11), 13591366. https://doi.org/10.1177/0956797611417632CrossRefGoogle ScholarPubMed
Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139(1), 81132. https://doi.org/10.1037/a0028727CrossRefGoogle ScholarPubMed
Sterne, J. A. C., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., … Carpenter, J. R. (2009). Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ (Clinical Research Ed.), 338, b2393. https://doi.org/10.1136/BMJ.B2393CrossRefGoogle ScholarPubMed
Tilling, K., Macdonald-Wallis, C., Lawlor, D. A., Hughes, R. A., & Howe, L. D. (2014). Modelling childhood growth using fractional polynomials and linear splines. Annals of Nutrition & Metabolism, 65(2–3), 129138. https://doi.org/10.1159/000362695CrossRefGoogle ScholarPubMed
Treadway, M. T., & Pizzagalli, D. A. (2014). Imaging the pathophysiology of major depressive disorder - from localist models to circuit-based analysis. Biology of Mood & Anxiety Disorders, 4(1), 5. https://doi.org/10.1186/2045-5380-4-5CrossRefGoogle ScholarPubMed
Turner, N., Joinson, C., Peters, T. J., Wiles, N., & Lewis, G. (2014). Validity of the short mood and feelings questionnaire in late adolescence. Psychological Assessment, 26(3), 752762. https://doi.org/10.1037/a0036572CrossRefGoogle ScholarPubMed
Vos, T. (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(388), 15451602. https://doi.org/10.1016/S0140-6736(16)31678-6CrossRefGoogle Scholar
Wechsler, D. (n.d.). Wechsler abbreviated scale of intelligence. San Antonio, TX: Psychological Corporation.CrossRefGoogle Scholar
Wolke, D., Waylen, A., Samara, M., Steer, C., Goodman, R., Ford, T., & Lamberts, K. (2009). Selective drop-out in longitudinal studies and non-biased prediction of behaviour disorders. British Journal of Psychiatry, 195(03), 249256. https://doi.org/10.1192/bjp.bp.108.053751CrossRefGoogle ScholarPubMed
Supplementary material: File

Lewis et al. Supplementary Materials

Lewis et al. Supplementary Materials

Download Lewis et al. Supplementary Materials(File)
File 40.8 KB