Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T18:51:56.726Z Has data issue: false hasContentIssue false

Growth of prefrontal and limbic brain regions and anxiety disorders in children born very preterm

Published online by Cambridge University Press:  09 June 2021

Courtney P. Gilchrist
Affiliation:
School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
Deanne K. Thompson
Affiliation:
Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia Department of Paediatrics, University of Melbourne, Melbourne, Australia Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
Bonnie Alexander
Affiliation:
Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia Department of Neurosurgery, Royal Children’s Hospital, Melbourne, Australia
Claire E. Kelly
Affiliation:
Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
Karli Treyvaud
Affiliation:
Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia La Trobe University, Melbourne, Australia Royal Women's Hospital, Melbourne, Victoria, Australia
Lillian G. Matthews
Affiliation:
Monash Biomedical Imaging, Monash University, Melbourne, Australia Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
Leona Pascoe
Affiliation:
Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
Diana Zannino
Affiliation:
Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Melbourne, Australia
Rosemary Yates
Affiliation:
Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
Chris Adamson
Affiliation:
Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
Mary Tolcos
Affiliation:
School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
Jeanie L. Y. Cheong
Affiliation:
Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia Royal Women's Hospital, Melbourne, Victoria, Australia Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
Terrie E. Inder
Affiliation:
Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia Monash Biomedical Imaging, Monash University, Melbourne, Australia
Lex W. Doyle
Affiliation:
Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia Department of Paediatrics, University of Melbourne, Melbourne, Australia Royal Women's Hospital, Melbourne, Victoria, Australia Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
Angela Cumberland
Affiliation:
School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
Peter J. Anderson*
Affiliation:
Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
*
Author for correspondence: Peter J. Anderson, E-mail: peter.j.anderson@monash.edu

Abstract

Background

Children born very preterm (VP) display altered growth in corticolimbic structures compared with full-term peers. Given the association between the cortiocolimbic system and anxiety, this study aimed to compare developmental trajectories of corticolimbic regions in VP children with and without anxiety diagnosis at 13 years.

Methods

MRI data from 124 VP children were used to calculate whole brain and corticolimbic region volumes at term-equivalent age (TEA), 7 and 13 years. The presence of an anxiety disorder was assessed at 13 years using a structured clinical interview.

Results

VP children who met criteria for an anxiety disorder at 13 years (n = 16) displayed altered trajectories for intracranial volume (ICV, p < 0.0001), total brain volume (TBV, p = 0.029), the right amygdala (p = 0.0009) and left hippocampus (p = 0.029) compared with VP children without anxiety (n = 108), with trends in the right hippocampus (p = 0.062) and left medial orbitofrontal cortex (p = 0.079). Altered trajectories predominantly reflected slower growth in early childhood (0–7 years) for ICV (β = −0.461, p = 0.020), TBV (β = −0.503, p = 0.021), left (β = −0.518, p = 0.020) and right hippocampi (β = −0.469, p = 0.020) and left medial orbitofrontal cortex (β = −0.761, p = 0.020) and did not persist after adjusting for TBV and social risk.

Conclusions

Region- and time-specific alterations in the development of the corticolimbic system in children born VP may help to explain an increase in anxiety disorders observed in this population.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Joint senior authors.

References

Akhondi-Asl, A., & Warfield, S. K. (2013). Simultaneous truth and performance level estimation through fusion of probabilistic segmentations. IEEE Transactions on Medical Imaging, 32(10), 18401852. doi:10.1109/TMI.2013.2266258.CrossRefGoogle ScholarPubMed
Alexander, B., Kelly, C. E., Adamson, C., Beare, R., Zannino, D., Chen, J., … Thompson, D. K. (2019). Changes in neonatal regional brain volume associated with preterm birth and perinatal factors. Neuroimage, 185, 654663. doi:10.1016/j.neuroimage.2018.07.021.CrossRefGoogle ScholarPubMed
Alexander, B., Murray, A. L., Loh, W. Y., Matthews, L. G., Adamson, C., Beare, R., … Thompson, D. K. (2017). A new neonatal cortical and subcortical brain atlas: The Melbourne Children's Regional Infant Brain (M-CRIB) atlas. Neuroimage, 147, 841851. doi:10.1016/j.neuroimage.2016.09.068.CrossRefGoogle ScholarPubMed
Anderson, P. J., De Luca, C. R., Hutchinson, E., Spencer-Smith, M. M., Roberts, G., Doyle, L. W., & Victorian Infant Collaborative, S. (2011). Attention problems in a representative sample of extremely preterm/extremely low birth weight children. Developmental Neuropsychology, 36(1), 5773. doi:10.1080/87565641.2011.540538.CrossRefGoogle Scholar
Asami, T., Yamasue, H., Hayano, F., Nakamura, M., Uehara, K., Otsuka, T., … Hirayasu, Y. (2009). Sexually dimorphic gray matter volume reduction in patients with panic disorder. Psychiatry Research, 173(2), 128134. doi:10.1016/j.pscychresns.2008.10.004.CrossRefGoogle ScholarPubMed
Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage, 54(3), 20332044. doi:10.1016/j.neuroimage.2010.09.025.CrossRefGoogle ScholarPubMed
Bannerman, D. M., Rawlins, J. N., McHugh, S. B., Deacon, R. M., Yee, B. K., Bast, T., … Feldon, J. (2004). Regional dissociations within the hippocampus − memory and anxiety. Neuroscience and Biobehavioural Reviews, 28(3), 273283. doi:10.1016/j.neubiorev.2004.03.004.CrossRefGoogle ScholarPubMed
Beare, R., Chen, J., Adamson, C. L., Silk, T., Thompson, D. K., Yang, J. Y., … Wood, A. G. (2013). Brain extraction using the watershed transform from markers. Frontiers in Neuroinformatics, 7(35), 115. doi:10.3389/fninf.2013.00032.CrossRefGoogle ScholarPubMed
Beare, R. J., Chen, J., Kelly, C. E., Alexopoulos, D., Smyser, C. D., Rogers, C. E., … Thompson, D. K. (2016). Neonatal brain tissue classification with morphological adaptation and unified segmentation. Frontiers in Neuroinformatics, 10(12), 117. doi:10.3389/fninf.2016.00012.CrossRefGoogle ScholarPubMed
Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4), 11651188. Retrieved from https://imstat.org/journals-and-publications/annals-of-statistics/.CrossRefGoogle Scholar
Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., & Anand, K. J. S. (2002). Cognitive and behavioral outcomes of school-aged children who were born preterm: A meta-analysis. JAMA, 288(6), 728737. Retrieved from https://jamanetwork.com/journals/jama.CrossRefGoogle ScholarPubMed
Botting, N., Powls, A., Cooke, R. W., & Marlow, N. (1997). Attention deficit hyperactivity disorders and other psychiatric outcomes in very low birthweight children at 12 years. Journal of Child Psychology and Psychiatry, 38(8), 931941. Retrieved from https://acamh.onlinelibrary.wiley.com/journal/14697610.CrossRefGoogle ScholarPubMed
Bracewell, M., & Marlow, N. (2002). Patterns of motor disability in very preterm children. Mental Retardation and Developmental Disabilities Research Reviews, 8(4), 241248. doi:10.1002/mrdd.10049.CrossRefGoogle ScholarPubMed
Brydges, C. R., Landes, J. K., Reid, C. L., Campbell, C., French, N., & Anderson, M. (2018). Cognitive outcomes in children and adolescents born very preterm: A meta-analysis. Developmental Medicine & Child Neurology, 60(5), 452468. doi:10.1111/dmcn.13685.CrossRefGoogle ScholarPubMed
Burnett, A. C., Anderson, P. J., Cheong, J., Doyle, L. W., Davey, C. G., & Wood, S. J. (2011). Prevalence of psychiatric diagnoses in preterm and full-term children, adolescents and young adults: A meta-analysis. Psychological Medicine, 41(12), 24632474. doi:10.1017/S003329171100081X.CrossRefGoogle Scholar
Burnett, A., Davey, C. G., Wood, S. J., Wilson-Ching, M., Molloy, C., Cheong, J. L., … Anderson, P. J. (2013). Extremely preterm birth and adolescent mental health in a geographical cohort born in the 1990s. Psychological Medicine, 44(7), 15331544. doi:10.1017/S0033291713002158.CrossRefGoogle Scholar
Carlin, J. B., Gurrin, L. C., Sterne, J. A., Morley, R., & Dwyer, T. (2005). Regression models for twin studies: A critical review. International Journal of Epidemiology, 34(5), 10891099. doi:10.1093/ije/dyi153.CrossRefGoogle ScholarPubMed
Cismaru, A. L., Gui, L., Vasung, L., Lejeune, F., Barisnikov, K., Truttmann, A., … Huppi, P. S. (2016). Altered amygdala development and fear processing in prematurely born infants. Frontiers in Neuroanatomy, 10, 55. doi:10.3389/fnana.2016.00055.CrossRefGoogle ScholarPubMed
Clark, C. A., Woodward, L. J., Horwood, L. J., & Moor, S. (2008). Development of emotional and behavioral regulation in children born extremely preterm and very preterm: Biological and social influences. Child Development, 79(5), 14441462. doi:10.1111/j.1467-8624.2008.01198.x.CrossRefGoogle ScholarPubMed
Constable, R. T., Ment, L. R., Vohr, B. R., Kesler, S. R., Fulbright, R. K., Lacadie, C., … Schafer, R. J. (2008). Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: An investigation of group and gender effects. Pediatrics, 121(2), 306316. doi:10.1542/peds.2007-0414.CrossRefGoogle ScholarPubMed
Cummings, C. M., Caporino, N. E., & Kendall, P. C. (2014). Comorbidity of anxiety and depression in children and adolescents: 20 years after. Psychological Bulletin, 140(3), 816. doi:10.1037/a0034733.CrossRefGoogle ScholarPubMed
De Bellis, M. D., Casey, B. J., Dahl, R. E., Birmaher, B., Williamson, D. E., Thomas, K. M., … Ryan, N. D. (2000). A pilot study of amygdala volumes in pediatric generalized anxiety disorder. Biological Psychiatry, 48(1), 5157. Retrieved from https://www.biologicalpsychiatryjournal.com/.CrossRefGoogle ScholarPubMed
de Kieviet, J. F., Zoetebier, L., van Elburg, R. M., Vermeulen, R. J., & Oosterlaan, J. (2012). Brain development of very preterm and very low-birthweight children in childhood and adolescence: A meta-analysis. Developmental Medicine and Child Neurology, 54(4), 313323. doi:10.1111/j.1469-8749.2011.04216.x.CrossRefGoogle ScholarPubMed
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980. doi:10.1016/j.neuroimage.2006.01.021.CrossRefGoogle ScholarPubMed
Dobbing, J. (1990). Vulnerable periods in developing brain. In J, Dobbing (Ed.), Brain, behaviour, and iron in the infant diet (pp. 117). London: Springer.CrossRefGoogle Scholar
Doyle, L. W. (2004). Evaluation of neonatal intensive care for extremely low birth weight infants in Victoria over two decades: I. Effectiveness. Pediatrics, 113(3), 505509. doi:10.1542/peds.113.3.505.CrossRefGoogle ScholarPubMed
Ducharme, S., Albaugh, M. D., Hudziak, J. J., Botteron, K. N., Nguyen, T.-V., Truong, C., … Byars, A. W. (2014). Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cerebral Cortex, 24(11), 29412950. doi:10.1093/cercor/bht151.CrossRefGoogle ScholarPubMed
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., … Montillo, A. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341355. Retrieved from https://www.cell.com/neuron/home.CrossRefGoogle ScholarPubMed
Ganella, E. P., Burnett, A., Cheong, J., Thompson, D., Roberts, G., Wood, S., … Victorian Infant Collaborative Study, G., (2015). Abnormalities in orbitofrontal cortex gyrification and mental health outcomes in adolescents born extremely preterm and/or at an extremely low birth weight. Human Brain Mapping, 36(3), 11381150. doi:10.1002/hbm.22692.CrossRefGoogle ScholarPubMed
Gimenez, M., Junque, C., Narberhaus, A., Caldu, X., Salgado-Pineda, P., Bargallo, N., … Botet, F. (2004). Hippocampal gray matter reduction associates with memory deficits in adolescents with history of prematurity. Neuroimage, 23(3), 869877. doi:10.1016/j.neuroimage.2004.07.029.CrossRefGoogle ScholarPubMed
Golan, M. H., Mane, R., Molczadzki, G., Zuckerman, M., Kaplan-Louson, V., Huleihel, M., & Perez-Polo, J. R. (2009). Impaired migration signaling in the hippocampus following prenatal hypoxia. Neuropharmacology, 57(5-6), 511522. doi:10.1016/j.neuropharm.2009.07.028.CrossRefGoogle ScholarPubMed
Gold, A. L., Steuber, E. R., White, L. K., Pacheco, J., Sachs, J. F., Pagliaccio, D., … Pine, D. S. (2017). Cortical thickness and subcortical gray matter volume in pediatric anxiety disorders. Neuropsychopharmacology, 42(12), 24232433. doi:10.1038/npp.2017.83.CrossRefGoogle ScholarPubMed
Goodman, R., Ford, T., Richards, H., Gatward, R., & Meltzer, H. (2000). The development and well-being assessment: Description and initial validation of an integrated assessment of child and adolescent psychopathology. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 41(5), 645655. Retrieved from https://acamh.onlinelibrary.wiley.com/journal/14697610.CrossRefGoogle ScholarPubMed
Heinen, R., Bouvy, W. H., Mendrik, A. M., Viergever, M. A., Biessels, G. J., & De Bresser, J. J. (2016). Robustness of automated methods for brain volume measurements across different MRI field strengths. PloS one, 11(10), e0165719. doi: 10.1371/journal.pone.0165719.CrossRefGoogle ScholarPubMed
Helenius, K., Gissler, M., & Lehtonen, L. (2019). Trends in centralization of very preterm deliveries and neonatal survival in Finland in 1987–2017. Translational Pediatrics, 8(3), 227. doi: 10.21037/tp.2019.07.05.CrossRefGoogle ScholarPubMed
Holland, B. A., Haas, D. K., Norman, D., Brant-Zawadzki, M., & Newton, T. H. (1986). MRI of normal brain maturation. American Journal of Neuroradiology, 7(2), 201208. Retrieved from http://www.ajnr.org/.Google ScholarPubMed
Hölzel, B. K., Hoge, E. A., Greve, D. N., Gard, T., Creswell, J. D., Brown, K. W., … Lazar, S. W. (2013). Neural mechanisms of symptom improvements in generalized anxiety disorder following mindfulness training. NeuroImage: Clinical, 2, 448458. doi:10.1016/j.nicl.2013.03.011.CrossRefGoogle ScholarPubMed
Iglesias, J. E., Augustinack, J. C., Nguyen, K., Player, C. M., Player, A., Wright, M., … Wald, L. L. (2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage, 115, 117137. doi:10.1016/j.neuroimage.2015.04.042.CrossRefGoogle ScholarPubMed
Inder, T. E., Warfield, S. K., Wang, H., Huppi, P. S., & Volpe, J. J. (2005). Abnormal cerebral structure is present at term in premature infants. Pediatrics, 115(2), 286294. doi:10.1542/peds.2004-0326.CrossRefGoogle ScholarPubMed
Indredavik, M. S., Vik, T., Heyerdahl, S., Kulseng, S., Fayers, P., & Brubakk, A. M. (2004). Psychiatric symptoms and disorders in adolescents with low birth weight. Archive of Disease in Childhood Fetal Neonatal Edition, 89(5), F445F450. doi:10.1136/adc.2003.038943.CrossRefGoogle ScholarPubMed
Irle, E., Ruhleder, M., Lange, C., Seidler-Brandler, U., Salzer, S., Dechent, P., … Leichsenring, F. (2010). Reduced amygdalar and hippocampal size in adults with generalized social phobia. Journal of Psychiatry & Neuroscience, 35(2), 126. doi:10.1503/jpn.090041.CrossRefGoogle ScholarPubMed
Jaekel, J., Baumann, N., Bartmann, P., & Wolke, D. (2018). Mood and anxiety disorders in very preterm/very low-birth weight individuals from 6 to 26 years. Journal of Child Psychology and Psychiatry, 59(1), 8895. doi:10.1111/jcpp.12787.CrossRefGoogle ScholarPubMed
Johnson, S., Hollis, C., Kochhar, P., Hennessy, E., Wolke, D., & Marlow, N. (2010). Psychiatric disorders in extremely preterm children: Longitudinal finding at age 11 years in the EPICure study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(5), 453463. doi:10.1016/j.jaac.2010.02.002.Google ScholarPubMed
Johnson, S., O'Reilly, H., Ni, Y., Wolke, D., & Marlow, N. (2019). Psychiatric symptoms and disorders in extremely preterm young adults at 19 years of age and longitudinal findings from middle childhood. Journal of American Academy of Child and Adolescent Psychiatry, 58(8), 820826.e826. doi:10.1016/j.jaac.2019.02.020.CrossRefGoogle Scholar
Kelly, C. E., Thompson, D. K., Chen, J., Leemans, A., Adamson, C. L., Inder, T. E., … Anderson, P. J. (2016). Axon density and axon orientation dispersion in children born preterm. Human Brain Mapping, 37(9), 30803102. doi:10.1002/hbm.23227.CrossRefGoogle ScholarPubMed
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Archives of General Psychiatry, 62(6), 593602. doi:10.1001/archpsyc.62.6.593.CrossRefGoogle ScholarPubMed
Kidokoro, H., Neil, J., & Inder, T. (2013). New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. American Journal of Neuroradiology, 34(11), 22082214. doi:10.3174/ajnr.A3521.CrossRefGoogle ScholarPubMed
Kim, M. J., Gee, D. G., Loucks, R. A., Davis, F. C., & Whalen, P. J. (2011). Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cerebral Cortex, 21(7), 16671673. doi:10.1093/cercor/bhq237.CrossRefGoogle ScholarPubMed
Kretschmann, H., Kammradt, G., Krauthausen, I., Sauer, B., & Wingert, F. (1986). Growth of the hippocampal formation in man. Bibliotheca Anatomica, 28, 2752. Retrieved from https://www.karger.com/BookSeries/Home/223882.Google Scholar
Laerum, A. M., Reitan, S. K., Evensen, K. A., Lydersen, S., Brubakk, A. M., Skranes, J., … Indredavik, M. S. (2017). Psychiatric disorders and general functioning in low birth weight adults: A longitudinal study. Pediatrics, 139(2), e20162135. doi: 10.1542/peds.2016-2135.CrossRefGoogle ScholarPubMed
Lanteaume, L., Khalfa, S., Régis, J., Marquis, P., Chauvel, P., & Bartolomei, F. (2007). Emotion induction after direct intracerebral stimulations of human amygdala. Cerebral Cortex, 17(6), 13071313. doi:10.1093/cercor/bhl041.CrossRefGoogle ScholarPubMed
Lipka, J., Miltner, W. H., & Straube, T. (2011). Vigilance for threat interacts with amygdala responses to subliminal threat cues in specific phobia. Biological Psychiatry, 70(5), 472478. doi:10.1016/j.biopsych.2011.04.005.CrossRefGoogle ScholarPubMed
Milham, M. P., Nugent, A. C., Drevets, W. C., Dickstein, D. S., Leibenluft, E., Ernst, M., … Pine, D. S. (2005). Selective reduction in amygdala volume in pediatric anxiety disorders: A voxel-based morphometry investigation. Biological Psychiatry, 57(9), 961966. doi:10.1016/j.biopsych.2005.01.038.CrossRefGoogle ScholarPubMed
Monk, C. S., Telzer, E. H., Mogg, K., Bradley, B. P., Mai, X. L., Louro, H. M., … Pine, D. S. (2008). Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Archives of General Psychiatry, 65(5), 568576. doi:10.1001/archpsyc.65.5.568.CrossRefGoogle ScholarPubMed
Monson, B. B., Anderson, P. J., Matthews, L. G., Neil, J. J., Kapur, K., Cheong, J. L., … Inder, T. E. (2016). Examination of the pattern of growth of cerebral tissue volumes from hospital discharge to early childhood in very preterm infants. JAMA Pediatrics, 170(8), 772779. doi:10.1001/jamapediatrics.2016.0781.CrossRefGoogle ScholarPubMed
Mueller, S. C., Aouidad, A., Gorodetsky, E., Goldman, D., Pine, D. S., & Ernst, M. (2013). Gray matter volume in adolescent anxiety: An impact of the brain-derived neurotrophic factor Val(66)Met polymorphism? Journal of the American Academy Child and Adolescent Psychiatry, 52(2), 184195. doi:10.1016/j.jaac.2012.11.016.CrossRefGoogle ScholarPubMed
Newman, E., Thompson, W. K., Bartsch, H., Hagler, D. J., Chen, C.-H., Brown, T. T., … Libiger, O. (2016). Anxiety is related to indices of cortical maturation in typically developing children and adolescents. Brain Structure and Function, 221(6), 30133025. doi:10.1007/s00429-015-1085-9.CrossRefGoogle ScholarPubMed
Nosarti, C., Al-Asady, M. H., Frangou, S., Stewart, A. L., Rifkin, L., & Murray, R. M. (2002). Adolescents who were born very preterm have decreased brain volumes. Brain, 125(7), 16161623. doi:10.1093/brain/awf157.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., & Gross, J. J. (2004). For better or for worse: Neural systems supporting the cognitive down-and up-regulation of negative emotion. Neuroimage, 23(2), 483499. doi:10.1016/j.neuroimage.2004.06.030.CrossRefGoogle ScholarPubMed
Omizzolo, C., Thompson, D. K., Scratch, S. E., Stargatt, R., Lee, K. J., Cheong, J., … Anderson, P. J. (2013). Hippocampal volume and memory and learning outcomes at 7 years in children born very preterm. Journal of the International Neuropsychological Society, 19(10), 10651075. doi:10.1017/S1355617713000891.CrossRefGoogle ScholarPubMed
Padilla, N., Alexandrou, G., Blennow, M., Lagercrantz, H., & Aden, U. (2015). Brain growth gains and losses in extremely preterm infants at term. Cerebral Cortex, 25(7), 18971905. doi:10.1093/cercor/bht431.CrossRefGoogle ScholarPubMed
Papile, L.-A., Burstein, J., Burstein, R., & Koffler, H. (1978). Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. The Journal of Pediatrics, 92(4), 529534. doi:10.1016/S0022-3476(78)80282-0.CrossRefGoogle Scholar
Peterson, B. S., Vohr, B., Staib, L. H., Cannistraci, C. J., Dolberg, A., Schneider, K. C., … Ment, L. R. (2000). Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA, 284(15), 19391947. doi:10.1001/jama.284.15.1939.CrossRefGoogle ScholarPubMed
Phan, K. L., Orlichenko, A., Boyd, E., Angstadt, M., Coccaro, E. F., Liberzon, I., & Arfanakis, K. (2009). Preliminary evidence of white matter abnormality in the uncinate fasciculus in generalized social anxiety disorder. Biological Psychiatry, 66(7), 691694. doi:10.1016/j.biopsych.2009.02.028.CrossRefGoogle ScholarPubMed
Qin, S., Young, C. B., Duan, X., Chen, T., Supekar, K., & Menon, V. (2014). Amygdala subregional structure and intrinsic functional connectivity predicts individual differences in anxiety during early childhood. Biological Psychiatry, 75(11), 892900. doi:10.1016/j.biopsych.2013.10.006.CrossRefGoogle ScholarPubMed
Roberts, G., Howard, K., Spittle, A. J., Brown, N. C., Anderson, P. J., & Doyle, L. W. (2008). Rates of early intervention services in very preterm children with developmental disabilities at age 2 years. Journal of Paediatrics and Child Health, 44(5), 276280. doi:10.1111/j.1440-1754.2007.01251.x.CrossRefGoogle ScholarPubMed
Rogers, C. E., Barch, D. M., Sylvester, C. M., Pagliaccio, D., Harms, M. P., Botteron, K. N., & Luby, J. L. (2014). Altered gray matter volume and school age anxiety in children born late preterm. Journal of Pediatrics, 165(5), 928935. doi:10.1016/j.jpeds.2014.06.063.CrossRefGoogle ScholarPubMed
Rogers, C. E., Sylvester, C. M., Mintz, C., Kenley, J. K., Shimony, J. S., Barch, D. M., & Smyser, C. D. (2017). Neonatal amygdala functional connectivity at rest in healthy and preterm infants and early internalizing symptoms. Journal of the American Academy of Child and Adolescent Psychiatry, 56(2), 157166. doi:10.1016/j.jaac.2016.11.005.CrossRefGoogle ScholarPubMed
Schienle, A., Ebner, F., & Schafer, A. (2011). Localized gray matter volume abnormalities in generalized anxiety disorder. European Archives of Psychiatry and Clinical Neurosciience, 261(4), 303307. doi:10.1007/s00406-010-0147-5.CrossRefGoogle ScholarPubMed
Schmidt-Kastner, R., & Freund, T. (1991). Selective vulnerability of the hippocampus in brain ischemia. Neuroscience, 40(3), 599636. doi:10.1016/0306-4522(91)90001-5.CrossRefGoogle ScholarPubMed
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., … Rapoport, J. L. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28(14), 35863594. doi:10.1523/JNEUROSCI.5309-07.2008.CrossRefGoogle ScholarPubMed
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143155. doi:10.1002/hbm.10062.CrossRefGoogle ScholarPubMed
Strawn, J. R., Wehry, A. M., Chu, W. J., Adler, C. M., Eliassen, J. C., Cerullo, M. A., … DelBello, M. P. (2013). Neuroanatomic abnormalities in adolescents with generalized anxiety disorder: A voxel-based morphometry study. Depression and Anxiety, 30(9), 842848. doi:10.1002/da.22089.CrossRefGoogle ScholarPubMed
Talge, N. M., Holzman, C., Wang, J., Lucia, V., Gardiner, J., & Breslau, N. (2010). Late-Preterm birth and Its association with cognitive and socioemotional outcomes at 6 years of age. Pediatrics, 126(6), 11241131. doi:10.1542/peds.2010-1536.CrossRefGoogle ScholarPubMed
Thompson, D. K., Adamson, C., Roberts, G., Faggian, N., Wood, S. J., Warfield, S. K., … Inder, T. E. (2013). Hippocampal shape variations at term equivalent age in very preterm infants compared with term controls: Perinatal predictors and functional significance at age 7. Neuroimage, 70, 278287. doi:10.1016/j.neuroimage.2012.12.053.CrossRefGoogle ScholarPubMed
Thompson, D. K., Lee, K. J., Egan, G. F., Warfield, S. K., Doyle, L. W., Anderson, P. J., & Inder, T. E. (2014). Regional white matter microstructure in very preterm infants: Predictors and 7 year outcomes. Cortex, 52, 6074. doi:10.1016/j.cortex.2013.11.010.CrossRefGoogle ScholarPubMed
Thompson, D. K., Matthews, L. G., Alexander, B., Lee, K. J., Kelly, C. E., Adamson, C. L., … Anderson, P. J. (2020). Tracking regional brain growth up to age 13 in children born term and very preterm. Nature Communications, 11(1), 696. doi:10.1038/s41467-020-14334-9.CrossRefGoogle ScholarPubMed
Thompson, D. K., Warfield, S. K., Carlin, J. B., Pavlovic, M., Wang, H. K., Bear, M., … Inder, T. E. (2007). Perinatal risk factors altering regional brain structure in the preterm infant. Brain, 130, 667677. doi:10.1093/brain/awl277.CrossRefGoogle ScholarPubMed
Thompson, D. K., Wood, S. J., Doyle, L. W., Warfield, S. K., Lodygensky, G. A., Anderson, P. J., … Inder, T. E. (2008). Neonate hippocampal volumes: Prematurity, perinatal predictors, and 2-year outcome. Annals of Neurology, 63(5), 642651. doi:10.1002/ana.21367.CrossRefGoogle ScholarPubMed
Treyvaud, K., Anderson, V. A., Howard, K., Bear, M., Hunt, R. W., Doyle, L. W., … Anderson, P. J. (2009). Parenting behavior is associated with the early neurobehavioral development of very preterm children. Pediatrics, 123(2), 555561. doi:10.1542/peds.2008-0477.CrossRefGoogle ScholarPubMed
Treyvaud, K., Anderson, V. A., Lee, K. J., Woodward, L. J., Newnham, C., Inder, T. E., … Anderson, P. J. (2010). Parental mental health and early social-emotional development of children born very preterm. Journal of Pediatric Psychology, 35(7), 768777. doi:10.1093/jpepsy/jsp109.CrossRefGoogle ScholarPubMed
Treyvaud, K., Lee, K. J., Doyle, L. W., & Anderson, P. J. (2014). Very preterm birth influences parental mental health and family outcomes seven years after birth. Journal of Pediatrics, 164(3), 515521. doi:10.1016/j.jpeds.2013.11.001.CrossRefGoogle ScholarPubMed
Treyvaud, K., Thompson, D. K., Kelly, C. E., Loh, W. Y., Inder, T. E., Cheong, J. L. Y., … Anderson, P. J. (2020). Early parenting is associated with the developing brains of children born very preterm. The Clinical Neuropsychologist, 119. doi:10.1080/13854046.2020.1811895.Google ScholarPubMed
Treyvaud, K., Ure, A., Doyle, L. W., Lee, K. J., Rogers, C. E., Kidokoro, H., … Anderson, P. J. (2013). Psychiatric outcomes at age seven for very preterm children: Rates and predictors. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 54(7), 772779. doi:10.1111/jcpp.12040.CrossRefGoogle ScholarPubMed
Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 13101320. doi:10.1109/TMI.2010.2046908.CrossRefGoogle ScholarPubMed
Twilhaar, E. S., Wade, R. M., De Kieviet, J. F., Van Goudoever, J. B., Van Elburg, R. M., & Oosterlaan, J. (2018). Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: A meta-analysis and meta-regression. JAMA Pediatrics, 172(4), 361367. doi:10.1001/jamapediatrics.2017.5323.CrossRefGoogle ScholarPubMed
Utsunomiya, H., Takano, K., Okazaki, M., & Mitsudome, A. (1999). Development of the temporal lobe in infants and children: Analysis by MR-based volumetry. American Journal of Neuroradiology, 20(4), 717723. Retrieved from http://www.ajnr.org/.Google ScholarPubMed
Vandewouw, M. M., Young, J. M., Shroff, M. M., Taylor, M. J., & Sled, J. G. (2019). Altered myelin maturation in four year old children born very preterm. Neuroimage Clinical, 21, 101635. doi:10.1016/j.nicl.2018.101635.CrossRefGoogle ScholarPubMed
Van Lieshout, R. J., Boyle, M. H., Saigal, S., Morrison, K., & Schmidt, L. A. (2015). Mental health of extremely low birth weight survivors in their 30s. Pediatrics, 135(3), 452459. doi:10.1542/peds.2014-3143.CrossRefGoogle ScholarPubMed
Volpe, J. J. (2009). Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. The Lancet Neurology, 8(1), 110124. doi:10.1016/S1474-4422(08)70294-1.CrossRefGoogle ScholarPubMed
Volpe, J. J. (2019). Dysmaturation of premature brain: Importance, cellular mechanisms, and potential interventions. Pediatric Neurology, 95, 4266. doi:10.1016/j.pediatrneurol.2019.02.016.CrossRefGoogle ScholarPubMed
Walshe, M., Rifkin, L., Rooney, M., Healy, E., Nosarti, C., Wyatt, J., … Allin, M. (2008). Psychiatric disorder in young adults born very preterm: Role of family history. European Psychiatry, 23(7), 527531. doi:10.1016/j.eurpsy.2008.06.004.CrossRefGoogle ScholarPubMed
Westrupp, E. M., Northam, E., Doyle, L. W., Callanan, C., & Anderson, P. J. (2011). Adult psychiatric outcomes of very low birth weight survivors. Australian and New Zealand Journal of Psychiatry, 45(12), 10691077. doi:10.3109/00048674.2011.620561.CrossRefGoogle ScholarPubMed
Yates, R., Treyvaud, K., Doyle, L. W., Ure, A., Cheong, J. L. Y., Lee, K. J., … Anderson, P. J. (2020). Rates and stability of mental health disorders in children born very preterm at 7 and 13 years. Pediatrics, 145 (5), e20192699. doi:10.1542/peds.2019-2699.Google ScholarPubMed
Supplementary material: File

Gilchrist et al. supplementary material

Figures S1-S2 and Tables S1-S2

Download Gilchrist et al. supplementary material(File)
File 998.1 KB