Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T18:37:27.138Z Has data issue: false hasContentIssue false

The functional architecture of the prefrontal cortex and schizophrenia1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1995

References

Akbarian, S., Bunney, W. E. Jr., Potkin, S. G., Wigal, S. B., Hagman, J. O., Sandman, C. A. & Jones, E. G. (1992). Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Archives of General Psychiatry 50, 169177.CrossRefGoogle Scholar
Akbarian, S., Kim, J. J., Potkin, S. G., Hagman, J. O., Tafazzoli, A., Bunney, W. E. Jr., & Jones, E. G. (1995). Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Archives of General Psychiatry 52, 258266.CrossRefGoogle ScholarPubMed
Anderson, S. A., Classey, J. D., Condé, F., Lund, J. S. & Lewis, D. A. (1995). Postnatal development of excitatory and inhibitory inputs to layer III pyramidal cells in monkey prefrontal cortex. Neuroscience 67, 722.CrossRefGoogle ScholarPubMed
Bauer, R. H. & Fuster, J. M. (1976). Delayed matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. Journal of Comparative Physiology and Psychology 90, 293302.CrossRefGoogle ScholarPubMed
Benes, F. M., McSparren, J., Bird, E. D., San Giovani, J. P. & Vincent, S. L. (1991). Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Archives of General Psychiatry 48, 9961001.CrossRefGoogle ScholarPubMed
Benes, F. M., Vincent, S. L., Alsterberg, G., Bird, E. D. & San Giovanni, J. P. (1992). Increased GABAa receptor binding in superficial layers of cingulate cortex in schizophrenics. Journal of Neuroscience 12, 924929.CrossRefGoogle ScholarPubMed
Bourgeois, J.-P., Goldman-Rakic, P. S. & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex 4, 7896.CrossRefGoogle ScholarPubMed
Breier, A., David, O. R., Buchanan, R. W., Moricle, L. A. & Munson, R. C. (1993). Effects of metabolic perturbation of plasma homovanillic acid in schizophrenia: relationship to prefrontal cortical volume. Archives of General Psychiatry 50, 541550.CrossRefGoogle Scholar
Brozoski, T. J., Brown, R. M., Rosvold, H. E. & Goldman, P. S. (1979). Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkeys. Science 205, 929932.CrossRefGoogle Scholar
Buchsbaum, M. S., Haier, R. J., Potkin, S. G., Neuchterlein, K., Bracha, H. S., Katz, M., Lohr, J., Wu, J., Lottenberg, S., Jerabek, P. A., Trenary, M., Tafalla, R., Reynolds, C. & Bunney, W. E. Jr., (1992). Frontrostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Archives of General Psychiatry 49, 935942.CrossRefGoogle Scholar
Carpenter, W. T. Jr. & Buchanan, R. W. (1994). Schizophrenia. New England Journal of Medicine 330, 681690.CrossRefGoogle ScholarPubMed
Cohen, J. D. & Servan-Schreiber, D. (1992). Context, cortex, and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychological Review 99, 4577.CrossRefGoogle ScholarPubMed
Colonnier, M. (1968). Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Research 9, 268287.CrossRefGoogle ScholarPubMed
Daviss, S. R. & Lewis, D. A. (1995). Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Research (in the press).CrossRefGoogle Scholar
DeFelipe, J., Conley, M. & Jones, E. G. (1986). Long range local collateralisation of axons arising from corticocortical cells in monkey sensory motor cortex. Journal of Neuroscience 6, 37493766.CrossRefGoogle Scholar
Doran, A. R., Boronow, J., Weinberger, D. R., Wolkowitz, O. M., Breier, A. & Pickar, D. (1987). Structural brain pathology in schizophrenia revisited: prefrontal cortex pathology is inversely correlated with cerebrospinal fluid levels of homovanillic acid. Neuropsychopharmacology 1, 2532.CrossRefGoogle ScholarPubMed
Feinberg, I. (1982). Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research 17, 319334.CrossRefGoogle ScholarPubMed
Feldman, M. L. (1984). Morphology of the neocortical pyramidal neuron. In Cerebral Cortex. Cellular Components of the Cerebral Cortex (ed. Peters, A. and Jones, E. G.), pp. 123200. Plenum Press: New York.Google Scholar
Friedman, H. R. & Goldman-Rakic, P. S. (1994). Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. Journal of Neuroscience 14, 27752788.CrossRefGoogle ScholarPubMed
Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology 61, 331349.CrossRefGoogle ScholarPubMed
Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. (1991). Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. Journal of Neurophysiology 65, 14641483.CrossRefGoogle ScholarPubMed
Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic ‘scotomas’. Journal of Neuroscience 13, 14791497.CrossRefGoogle ScholarPubMed
Fuster, J. M. (1985). The prefrontal cortex, mediator of cross-temporal contingencies. Human Neurobiology 4, 169179.Google ScholarPubMed
Fuster, J. M. (1989). The Prefrontal Corlex: Anatomy, Physiology and Neuropsychotogy of the Frontal Lobe. Raven Press: New York.Google Scholar
Fuster, J. M. (1993). Frontal lobes. Current Opinion in Neurobiology 3, 160165.CrossRefGoogle ScholarPubMed
Fuster, J. M., Bauer, R. H. & Jervey, J. P. (1982). Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Experimental Neurology 77, 679694.CrossRefGoogle ScholarPubMed
Garey, L. J., Patel, T. & Ong, W. Y. (1994). Loss of dendritic spines from cortical pyramidal cells in schizophrenia. Schizophrenia Research 11, 137.Google Scholar
Glantz, L. A. & Lewis, D. A.Synaptophysin and not RABA3 is specifically reduced in the prefrontal cortex of schizophrenic subjects. Society for Neuroscience Abstracts 20, 622.Google Scholar
Goldberg, T. E., Weinberger, D. R., Berman, K. F., Pliskin, N. H. & Podd, M. H. (1987). Further evidence for dementia of the prefrontal type in schizophrenia? Archives of General Psychiatry 44, 10081014.CrossRefGoogle ScholarPubMed
Goldberg, T. E., Berman, K. F. & Weinberger, D. R. (1989). An orientation to work on the prefrontal cortex in schizophrenia. In Schizophrenia: Scientific Progress (ed. Schultz, S. C. and Tamminga, C. A.), pp. 227246. Oxford University Press: New York.Google Scholar
Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In Handbook of Physiology. The Nervous System, vol. 5 (ed. Plum, F. and Mountcastle, V.), pp. 373417. American Physiological Society: Bethesda, MD.Google Scholar
Goldman-Rakic, P. S., Leranth, C., Williams, S. M., Mons, N. & Geffard, M. (1989). Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proceedings of the National Academy of Sciences USA 86, 90159019.CrossRefGoogle ScholarPubMed
Heaton, R., Paulsen, J. S., McAdams, L. A., Kuck, J., Zisook, S., Braff, D., Harris, J. & Jeste, D. V. (1994). Neuropsychological deficits in schizophrenics: relationship to age, chronicity, and dementia. Archives of General Psychiatry 51, 469476.CrossRefGoogle ScholarPubMed
Hoffman, R. E. & Dobscha, S. K. (1989). Cortical pruning and the development of schizophrenia: a computer model. Schizophrenia Bulletin 15, 477490.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex – developmental changes and effects of aging. Brain Research 163, 195205.Google ScholarPubMed
Jones, E. G. (1993). GABAergic neurons and their role in cortical plasticity in primates. Cerebral Cortex 3, 361372.CrossRefGoogle ScholarPubMed
Juliano, S. L., Friedman, D. P. & Eslin, D. E. (1990). Corticocortical connections predict patches of stimulus-evoked metabolic activity in monkey somatosensory cortex. Journal of Comparative Neurology 298, 2339.CrossRefGoogle ScholarPubMed
Keshavan, M. S., Anderson, S. & Pettegrew, J. W. (1994). Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. Journal of Psychiatric Research 28, 239265.CrossRefGoogle ScholarPubMed
King, M. A., Louis, P. M., Hunter, B. E. & Walker, D. W. (1989). Biocytin: a versatile anterograde neuroanatomical tract-tracing alternative. Brain Research 497, 361367.CrossRefGoogle ScholarPubMed
LaMantia, A.-S. & Rakic, P. (1990). Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. Journal of Neuroscience 10, 21562175.CrossRefGoogle ScholarPubMed
LeVay, S. (1973). Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations. Journal of Comparative Neurology 150, 5386.CrossRefGoogle Scholar
LeVay, S. (1988). Patchy intrinsic projections in visual cortex, area 18, of the cat: morphological and immunocytochemical evidence for an excitatory function. Journal of Comparative Neurology 269, 265275.CrossRefGoogle ScholarPubMed
Levitt, J. B., Lewis, D. A., Yoshioka, T. & Lund, J. S. (1993). Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 & 46). Journal of Comparative Neurology 338, 360376.CrossRefGoogle Scholar
Livingstone, M. S. & Hubel, D. H. (1984). Specificity of intrinsic connections in primate primary visual cortex. Journal of Neuroscience 4, 28302835.CrossRefGoogle ScholarPubMed
Lund, J. S. & Lewis, D. A. (1993). Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics. Journal of Comparative Neurology 328, 282312.CrossRefGoogle ScholarPubMed
McGuire, B. A., Gilbert, C. D., Rivlin, P. K. & Wiesel, T. N. (1991). Targets of horizontal connections in macaque primary visual cortex. Journal of Comparative Neurology 305, 370392.CrossRefGoogle ScholarPubMed
Mates, S. L. & Lund, J. S. (1983). Spine formation and maturation of type 1 synapses on spiny stellate neurons in primate visual cortex. Journal of Comparative Neurology 221, 9197.CrossRefGoogle ScholarPubMed
Matsubara, J. A., Cynader, M. S. & Swindale, N. V. (1987). Anatomical properties and physiological correlates of the intrinsic connections in cat area 18. Journal of Neuroscience 7, 14281446.CrossRefGoogle ScholarPubMed
Matsubara, J. A. & Phillips, D. P. (1988). Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat. Journal of Comparative Neurology 268, 3848.CrossRefGoogle ScholarPubMed
Melchitzky, D. S., Pucak, M. L., Dammerman, R. S. & Lewis, D. A. (1994). Morphology and extrinsic targets of pyramidal neurons furnishing intra-areal connections in monkey prefrontal cortex. Society for Neuroscience Abstracts 20, 1416.Google Scholar
Pakkenberg, B. (1993). Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors. Biological Psychiatry 34, 768772.CrossRefGoogle ScholarPubMed
Park, S. & Holztman, P. S. (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry 49, 975982.CrossRefGoogle ScholarPubMed
Pettegrew, J. W., Keshavan, M. S., Panchalingam, K., Strychor, S., Kaplan, D. B., Tretta, M. G. & Allen, M. (1991). Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. Archives of General Psychiatry 48, 563568.CrossRefGoogle ScholarPubMed
Plant, T. M. (1988). Neuroendocrine basis of puberty in the rhesus monkey (Macca mulatta). In Frontiers in Neuroendocrinology, vol. 10 (ed. Martin, L. and Ganong, W. F.), pp. 215238. Raven Press: New York.Google Scholar
Pucak, M. L., Levitt, J. B., Classey, J. D., Lund, J. S. & Lewis, D. A. (1994). Comparison of intra- and inter-areal patterns of connectivity in monkey prefrontal cortex. Society for Neuroscience Abstracts 20, 1416.Google Scholar
Quintana, J. & Fuster, J. (1992). Menemonic and predictive functions of cortical neurons in a memory task. Neuro Report 3, 721724.Google Scholar
Roberts, A. C., DeSalvia, M. A., Wilkinson, L. S., Collins, P., Muir, J. L., Everitt, B. J. & Robbins, T. W. (1994). 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. Journal of Neuroscience 14, 25312544.CrossRefGoogle Scholar
Rockland, K. S. & Lund, J. S. (1983). Intrinsic laminar lattice connections in primate visual cortex. Journal of Comparative Neurology 216, 303318.CrossRefGoogle ScholarPubMed
Rosenberg, D. R. & Lewis, D. A. (1995). Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemical analysis. Journal of Comparative Neurology 358, 383400.CrossRefGoogle ScholarPubMed
Sawaguchi, T. & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251, 947–251.CrossRefGoogle ScholarPubMed
Schlaepfer, T. E., Harris, G. J., Tien, A. Y., Peng, L. W., Lee, S., Federman, E. B., Chase, G. A., Barta, P. E. & Pearlson, G. D. (1994). Decreased regional cortical gray matter volume in schizophrenia. American Journal of Psychiatry 151, 842848.Google ScholarPubMed
Seidman, L. J., Yurgelun-Todd, D., Kremen, W. S., Woods, B. T., Goldstein, J. M., Faraone, S. V. & Tsuang, M. T. (1994). Relationship of prefrontal and temporal lobe MRI measures to neuropsychological performance in chronic schizophrenia. Biological Psychiatry 35, 235246.CrossRefGoogle ScholarPubMed
Selemon, L. D., Rajkowska, G. & Goldman-Rakic, P. S. (1993). Cytologic abnormalities in area 9 of the schizophrenic cortex. Society for Neuroscience Abstracts 19, 200.Google Scholar
Sesack, S. R., Snyder, C. L. & Lewis, D. A. (1995). Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex. Journal of Comparative Neurology (in the press).CrossRefGoogle Scholar
Smiley, J. F. & Goldman-Rakic, P. S. (1993). Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. Cerebral Cortex 3, 223238.CrossRefGoogle ScholarPubMed
T'so, D. Y. & Gilbert, C. D. (1988). The organization of chromatic and spatial interactions in the primate striate cortex. Journal of Neuroscience 8, 17121727.Google Scholar
T'so, D. Y., Gilbert, C. D. & Wiesel, T. N. (1986). Relationships between horizontal connections and functional architecture in cat striate cortex as revealed by cross-correlation analysis. Journal of Neuroscience 6, 11601170.Google Scholar
Wallace, M. N., Kitzes, L. M. & Jones, E. G. (1991). Intrinsic inter-and intra-laminar connections and their relationship to the tonotopic map in cat primary auditory cortex. Experimental Brain Research 86, 527544.CrossRefGoogle Scholar
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44, 660669.CrossRefGoogle ScholarPubMed
Weinberger, D. R., Berman, K. F. & Zec, R. F. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow (rCBF) evidence. Archives of General Psychiatry 43, 114125.CrossRefGoogle ScholarPubMed
Weinberger, D. R., Berman, K. F. & Illowsky, B. P. (1988). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: III. A new cohort and evidence for a monoaminergic mechanism. Archives of General Psychiatry 45, 609615.CrossRefGoogle Scholar
White, E. L. (1989). Cortical Circuits. Synoptic Organization of the Cerebral Cortex. Structure, Function and Theory (ed. Keller, A.), pp. 5223. Birkhauser: Boston, Basel, Berlin.Google Scholar
Yoshioka, T., Levitt, J. B. & Lund, J. S. (1992). Intrinsic lattice connections of macaque monkey visual cortical area V4. Journal of Neuroscience 12, 27852802.CrossRefGoogle ScholarPubMed
Zipursky, R. B., Lim, K. O., Sullivan, E. V., Brown, B. W. & Pfefferbaum, A. (1993). Widespread cerebral gray matter volume deficits in schizophrenia. Archives of General Psychiatry 49, 195205.CrossRefGoogle Scholar