Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T19:48:32.025Z Has data issue: false hasContentIssue false

Effects of methylphenidate on mismatch negativity and P3a amplitude of initially psychostimulant-naïve, adult ADHD patients

Published online by Cambridge University Press:  05 July 2021

Julijana le Sommer*
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark Department of Psychology, University of Copenhagen, Copenhagen, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Ann-Marie Low
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark Department of Psychology, University of Copenhagen, Copenhagen, Denmark
Jens Richardt Møllegaard Jepsen
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark Child and Adolescent Mental Health Centre, Mental Health Services, Copenhagen, Denmark
Birgitte Fagerlund
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
Signe Vangkilde
Affiliation:
Department of Psychology, University of Copenhagen, Copenhagen, Denmark Child and Adolescent Mental Health Centre, Mental Health Services, Copenhagen, Denmark
Thomas Habekost
Affiliation:
Department of Psychology, University of Copenhagen, Copenhagen, Denmark
Birte Glenthøj
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Bob Oranje
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
*
Author for correspondence: Julijana le Sommer, E-mail: julijanasommer@gmail.com

Abstract

Background

Deficient information processing in ADHD theoretically results in sensory overload and may underlie the symptoms of the disorder. Mismatch negativity (MMN) and P3a amplitude reflect an individual's detection and subsequent change in attention to stimulus change in their environment. Our primary aim was to explore MMN and P3a amplitude in adult ADHD patients and to examine the effects of methylphenidate (MPH) on these measures.

Methods

Forty initially psychostimulant-naïve, adult ADHD patients without comorbid ASD and 42 matched healthy controls (HC) were assessed with an MMN paradigm at baseline. Both groups were retested after 6 weeks, in which patients were treated with MPH.

Results

Neither significant group differences in MMN nor P3a amplitude were found at baseline. Although 6-week MPH treatment significantly reduced symptomatology and improved daily functioning of the patients, it did not significantly affect MMN amplitude; however, it did significantly reduce P3a amplitude compared to the HC. Furthermore, more severe ADHD symptoms were significantly associated with larger MMN amplitudes in the patients, both at baseline and follow-up.

Conclusion

We found no evidence for early information processing deficits in patients with ADHD, as measured with MMN and P3a amplitude. Six-week treatment with MPH decreased P3a but not MMN amplitude, although more severe ADHD-symptoms were associated with larger MMN amplitudes in the patients. Given that P3a amplitude represents an important attentional process and that glutamate has been linked to both ADHD and MMN amplitude, future research should investigate augmenting MPH treatment of less responsive adults with ADHD with glutamatergic antagonists.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, M. A., Martin-Iverson, M. T., Price, G., Lee, J., & Iyyalol, R. (2011). Dexamphetamine-induced reduction of P3a and P3b in healthy participants. Journal of Psychopharmacology, 25(12), 16231631.CrossRefGoogle ScholarPubMed
Alho, K., Woods, D. L., Algazi, A., Knight, R. T., & Naantanen, R. (1994). Lesions of frontal cortex diminish the auditory mismatch negativity. Electroencephalography and Clinical Neurophysiology, 91(5), 353362.CrossRefGoogle ScholarPubMed
Altabella, L., Zoratto, F., Adriani, W., & Canese, R. (2014). MR imaging-detectable metabolic alterations in attention deficit/hyperactivity disorder: From preclinical to clinical studies. American Journal of Neuroradiology, 35(6), 5563.CrossRefGoogle ScholarPubMed
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders DSM-5. 5th ed.Google Scholar
Arnsten, A. F. T. (2009). Toward a new understanding of attention-deficit hyperactivity. CNS Drugs, 23, 3341.CrossRefGoogle Scholar
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 6594.CrossRefGoogle ScholarPubMed
Bauer, J., Werner, A., Kohl, W., Kugel, H., Shushakova, A., Pedersen, A., & Ohrmann, P. (2018). Hyperactivity and impulsivity in adult attention-deficit/hyperactivity disorder is related to glutamatergic dysfunction in the anterior cingulate cortex. The World Journal of Biological Psychiatry, 19(7), 538546.CrossRefGoogle ScholarPubMed
Biederman, J., Fried, R., Tarko, L., Surman, C., Spencer, T., Pope, A., Grossman, R., … Faraone, S. V. (2017). Memantine in the treatment of executive function deficits in adults with ADHD. Journal of Attention Disorders, 21(4), 343352.CrossRefGoogle ScholarPubMed
Cheng, C. H., Chan, P. Y. S., Hsieh, Y. W., & Chen, K. F. (2016). A meta-analysis of mismatch negativity in children with attention deficit-hyperactivity disorders. Neuroscience Letters, 612, 132137.CrossRefGoogle ScholarPubMed
Corbisiero, S., Riecher-Rössler, A., Buchli-Kammermann, J., & Stieglitz, R. D. (2017). Symptom overlap and screening for symptoms of attention-deficit/hyperactivity disorder and psychosis risk in help-seeking psychiatric patients. Frontiers in Psychiatry, 8, 19. doi:10.3389/fpsyt.2017.00206.CrossRefGoogle ScholarPubMed
Dramsdahl, M., Ersland, L., Plessen, K. J., Haavik, J., Hugdahl, K., & Specht, K. (2011). Adults with attention-deficit/hyperactivity disorder – a brain magnetic resonance spectroscopy study. Frontiers in Psychiatry, 23(2), 65. https://doi.org/10.3389/fpsyt.2011.00065.Google Scholar
Endres, D., Perlov, E., Maier, S., Feige, B., Nickel, K., Goll, P., Bubl, E., … van Elst, L. T. (2015). Normal neurochemistry in the prefrontal and cerebellar brain of adults with attention-deficit hyperactivity disorder. Frontiers in Behavioral Neurosciences, 9, 242. doi:10.3389/fnbeh.2015.00242.Google ScholarPubMed
Faraone, S. V. (2018). The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neuroscience & Biobehavioral Reviews, 87, 255270. 10.1016/j.neubiorev.2018.02.001.CrossRefGoogle Scholar
Findling, R. L., McNamara, N. K., Stansbrey, R. J., Maxhimer, R., Periclou, A., Mann, A., … Graham, S. M. (2007). A pilot evaluation of the safety, tolerability, pharmacokinetics, and effectiveness of memantine in pediatric patients with attention-deficit/hyperactivity disorder combined type. Journal of Child and Adolescent Psychopharmacology, 17(1), 1933.CrossRefGoogle ScholarPubMed
Friedman, F., Cycowicz, Y. M., & Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25(4), 355373.CrossRefGoogle ScholarPubMed
Friedman, T., Sehatpour, P., Dias, E., Perrin, M., & Javitt, D. C. (2012). Differential relationships of mismatch negativity and visual P1 deficits to premorbid characteristics and functional outcome in schizophrenia. Biological Psychiatry, 71(6), 521529.CrossRefGoogle ScholarPubMed
Gomes, H., Duff, M., Flores, A., & Halperin, J. M. (2013). Automatic processing of duration in children with attention-deficit/hyperactivity disorder. Journal of the International Neuropsychological Society, 19(6), 19.CrossRefGoogle ScholarPubMed
Holstein, D. H., Vollenweider, F., Geye, M., Csomor, P., Belser, N., & Eich, D. (2013). Sensory and sensorimotor gating in adult attention-deficit/hyperactivity disorder (ADHD). Psychiatry Research, 205(1-2), 117126.CrossRefGoogle ScholarPubMed
Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III – The final common pathway. Schizophrenia Bulletin, 35(3), 549562.CrossRefGoogle ScholarPubMed
Huang, W. J., Chen, W. W., & Zhang, X. (2015). The neurophysiology of p 300-an integrated review. European Review for Medical and Pharmacological Sciences, 19(8), 14801488.Google ScholarPubMed
Huttunen, T., Halonen, A., Kaartinen, J., & Lyytinen, H. (2007). Does mismatch negativity show differences in reading-disabled children compared to normal children and children with attention deficit. Developmental Neuropsychology, 31(3), 453470.CrossRefGoogle ScholarPubMed
Huttunen, T., Kaartinen, J., Tolvanen, A., & Lyytinen, H. (2008). Mismatch negativity (MMN) elicited by duration deviations in children with reading disorder, attention deficit or both. International Journal of Psychophysiology, 69(1), 6977.CrossRefGoogle Scholar
Javitt, D. C., Grochowski, S., Shelley, A. M., & Ritter, W. (1998). Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalography and Clinical Neurophysiology, 108(2), 143153.CrossRefGoogle ScholarPubMed
Jensen, K. S., Oranje, B., Wienberg, M., & Glenthoj, B. Y. (2008). The effects of increased serotonergic activity on human sensory gating and its neural generators. Psychopharmacology, 196(4), 631641.CrossRefGoogle ScholarPubMed
Kahkonen, S., Ahveninen, J., Jaaskelainen, I., Kaakkola, S., Naatanen, R., Huttunen, J., & Pekkonen, E. (2001). Effects of haloperidol on selective attention. A combined whole-head MEG and high-resolution EEG study. Neuropsychopharmacology, 25, 498504. doi:10.1016/S0893-133X(01)00255-X.CrossRefGoogle ScholarPubMed
Kay, S. R., Opler, L. A., & Lindenmayer, J. P. (1988). Reliability and validity of the positive and negative syndrome scale for schizophrenics. Psychiatry Research, 23, 99110. doi:10.1016/0165-1781(88)90038-8.CrossRefGoogle ScholarPubMed
Kemner, C., Verbaten, M. N., Koelega, H. S., Buitelaar, J. K., van der Gaag, R. J., & Camfferman, G. (1996). Event-related brain potentials in children with attention-deficit and hyperactivity disorder: Effects of stimulus deviancy and task relevance in the visual and auditory modality. Biological Psychiatry, 40(6), 522534.CrossRefGoogle ScholarPubMed
Korostenskaja, M., Kičić, D., & Kähkönen, S. (2008). The effect of methylphenidate on auditory information processing in healthy volunteers: A combined EEG/MEG study. Psychopharmacology, 197, 475486. doi.org/10.1007/s00213-007-1065-8.CrossRefGoogle ScholarPubMed
Lepock, J. R., Mizrahi, R., Korostil, M., Bagby, M. R., Pang, E. W., & Kiang, M. (2018). Event-related potentials in the clinical high-risk (CHR) state for psychosis: A systematic review. Clinical EEG and Neuroscience, 49(4), 215225.CrossRefGoogle ScholarPubMed
Light, A., & Braff, L. (2005). Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Archives of General Psychiatry, 62(2), 127136.CrossRefGoogle ScholarPubMed
Light, G. A., & Naantanen, R. (2013). Mismatch negativity is a breakthrough biomarker for understanding and treating psychotic disorders. PNAS, 110(38), 1517515176.CrossRefGoogle ScholarPubMed
Low, A. M., le Sommer, J., Vangkilde, S., Fagerlund, B., Glenthøj, B., Sonuga-Barke, E., … Jepsen, J. R. M. (2018a). Delay aversion and executive functioning in adults with attention-deficit/hyperactivity disorder: Before and after stimulant treatment. The International Journal of Neuropsychopharmacology, 21(11), 9971006.CrossRefGoogle ScholarPubMed
Low, A. M., Vangkilde, S., le Sommer, J., Fagerlund, B., Glenthøj, B., Sonuga-Barke, E., … Jepsen, J. R. M. (2018b). Visual attention in adults with attention-deficit/hyperactivity disorder before and after stimulant treatment. Psychological Medicine, 21(11), 9971006.Google Scholar
Mick, E., Faraone, S. V., & Biederman, J. (2004). Age-dependent expression of attention- deficit/hyperactivity disorder symptoms. Psychiatric Clinics of North America, 27(2), 215224.CrossRefGoogle ScholarPubMed
Naantanen, R. (1995). The mismatch negativity: A powerful tool for cognitive neuroscience. Ear&Hearing, 16(1), 618.Google Scholar
Naantanen, R., Jacobsen, T., & Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42(1), 2532.CrossRefGoogle Scholar
Naatanen, R., & Kahkonen, S. (2009). Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: A review. International Journal of Neuropsychopharmacology, 12(1), 125135.CrossRefGoogle ScholarPubMed
Nagai, T., Tada, M., Kirihara, K., Araki, T., Jinde, S., & Kasai, K. (2013). Mismatch negativity as a ‘translatable’ brain marker toward early intervention for psychosis: A review. Frontiers in Psychiatry, 4, 115. doi:10.3389/fpsyt.2013.00115CrossRefGoogle ScholarPubMed
Nishimura, N., Ogura, C., & Ohta, I. (1995). Effects of the dopamine-related drug bromocriptine on event-related potentials and its relation to the law of initial value. PCN, 49(1), 7986.Google Scholar
Oades, R. D., Dittrnann-Balcarp, A., Schepkera, R., Eggersa, C., & Zerbm, D. (1996). Auditory event-related potentials (ERPs) and mismatch negativity (MMN) in healthy children and those with attention-deficit or tourette/tic symptoms. Biological Psychology, 43(2), 163185.CrossRefGoogle ScholarPubMed
Oknina, L. B., Wild-Wall, N., Oades, R. D., Juran, S. A., Röpcke, B., Pfueller, U., … Chen, E. Y. H. (2005). Frontal and temporal sources of mismatch negativity in healthy controls, patients at onset of schizophrenia in adolescence and others at 15 years after onset. Schizophrenia Research, 76(1), 2541.CrossRefGoogle ScholarPubMed
Olincy, A., Ross, R. G., Harris, J. G., Young, D. A., McAndrews, M. A., & Cawthra, E. (2000). The P50 auditory event-evoked potential in adult attention-deficit disorder: Comparison with schizophrenia. Biological Psychiatry, 47(11), 969977.CrossRefGoogle ScholarPubMed
Oranje, B., Aggernaes, B., Rasmussen, G., Ebdrup, B. H., & Glenthoj, B. Y. (2017). Selective attention and mismatch negativity in antipsychotic-naïve, first-episode schizophrenia patients before and after 6 months of antipsychotic monotherapy. Psychological Medicine, 47(12), 21552165.CrossRefGoogle ScholarPubMed
Oranje, B., & Glenthøj, B. Y. (2013a). Clonidine normalizes sensorimotor gating deficits in patients with schizophrenia on stable medication. Schizophrenia Bulletin, 39(3), 684691.CrossRefGoogle ScholarPubMed
Perez, V., Swerdlow, N. R., Braff, D. L., Naantanen, R., & Light, G. A. (2014). Using biomarkers to inform diagnosis, guide treatments and track response to interventions in psychotic illnesses. Biomarkers in Medicine, 8(1), 914.CrossRefGoogle ScholarPubMed
Pettersson, R., Söderstrom, S., & Nilsson, K. W. (2015). Diagnosing ADHD in adults: An examination of the discriminative validity of neuropsychological tests and diagnostic assessment instruments. Journal of Attention Disorders, 22(11), 113.Google ScholarPubMed
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 21282148.CrossRefGoogle ScholarPubMed
Polich, J., & Criado, J. R. (2006). Neuropsychology and neuropharmacology of P3a and P3b. International Journal of Psychophysiology, 60, 172185.CrossRefGoogle ScholarPubMed
Rothenberger, A., Banaschewski, T., Heinrich, H., & Moll, G. H. (2000). Comorbidity in ADHD-children: Effects of coexisting conduct disorder or tic disorder on event-related brain potentials in an auditory selective-attention task. European Archives of Psychiatry and Clinical Neurosciences, 250, 101110. doi.org/10.1007/s004060070042.CrossRefGoogle ScholarPubMed
Rydkjær, J., Jepsen, J. R. M., Pagsberg, A. K., Fagerlund, B., Glenthoj, B. Y., & Oranje, B. (2017). Mismatch negativity and P3a amplitude in young adolescents with first-episode psychosis: A comparison with ADHD. Psychological Medicine, 47(2), 377388.CrossRefGoogle ScholarPubMed
Salisbury, D. F., & Haigh, S. M. (2016). Complex mismatch negativity in chronic and first episode schizophrenia. International Journal of Psychophysiology, 59(8), 686694.Google Scholar
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59 (Suppl 20): 2257.Google ScholarPubMed
Shelley, A. M., Ward, P. B., Catts, S. V., Michie, P. T., Andrews, S., & McConaghy, N. (1991). Mismatch negativity: An index of a preattentive processing deficit in schizophrenia. Biological Psychiatry, 30(10), 10591062.CrossRefGoogle ScholarPubMed
Spencer, T. J., Adler, L. A., Qiao, M., Saylor, K. E., Brown, T. E., Holdnack, J. A., Schuh, K. J., … Kelsey, D. K. (2010). Validation of the adult ADHD investigator symptom rating scale (AISRS). Journal of Attention Disorders, 14(1), 5768.CrossRefGoogle ScholarPubMed
Spencer, A. E., Uchida, M., Kenworthy, T., Keary, C. J., & Biederman, J. (2014). Glutamatergic dysregulation in pediatric psychiatric disorders: A systematic review of the magnetic resonance spectroscopy literature. The Journal of Clinical Psychiatry, 75(11), 12261241.CrossRefGoogle ScholarPubMed
Surman, C. B., Hammerness, P. G., Petty, C., Spencer, T., Doyle, R., Napolean, S., Chu, N., … Biederman, J. (2012). A pilot open label prospective study of memantine monotherapy in adults with ADHD. The World Journal of Biological Psychiatry, 14(4), 291298.CrossRefGoogle ScholarPubMed
Takeshita, S., & Ogura, C. (1994). Effect of the dopamine D2 antagonist sulpiride on event-related potentials and its relation to the law of initial value. International Journal of Psychophysiology, 16(1), 99106.CrossRefGoogle Scholar
Todd, J., Michie, P. T., Schall, U., Karayanidis, F., Yabe, H., & Naantanen, R. (2008). Deviant matters: Duration, frequency, and intensity deviants reveal different patterns of mismatch negativity reduction in early and late schizophrenia. Biological Psychiatry, 63(1), 5864.CrossRefGoogle ScholarPubMed
Umbricht, D., Koller, R., Vollenweider, F. X., & Schmid, L. (2002). Mismatch negativity predicts psychotic experiences induced by NMDA receptor antagonist in healthy volunteers. Biological Psychiatry, 51(5), 400406.CrossRefGoogle ScholarPubMed
Umbricht, D., Schmid, L., Koller, R., Vollenweider, F. X., Hell, D., & Javitt, D. C. (2000). Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: Implications for models of cognitive deficits in schizophrenia. Archives of General Psychiatry, 57(12), 11391147.CrossRefGoogle ScholarPubMed
Vlaskamp, C., Oranje, B., Madsen, G. F., Jepsen, J. R. M., Durston, S., Cantio, C., … Bilenberg, N. (2017). Auditory processing in autism spectrum disorder: Mismatch negativity deficits. Autism Research, 10(11), 18571865.CrossRefGoogle ScholarPubMed
Wienberg, M., Glenthoj, B. Y., Jensen, K. S., & Oranje, B. (2010). A single high dose of escitalopram increases mismatch negativity without affecting processing negativity or P300 amplitude in healthy volunteers. Journal of Psychopharmacology, 24(8), 11831192.CrossRefGoogle ScholarPubMed
Wilens, T. E. (2008). Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. Journal of Clinical Psychopharmacology, 28(3), 4653.CrossRefGoogle ScholarPubMed
Winsberg, B. G., Javitt, D. C., & Shanahan, G. (1997). Electrophysiological indices of information processing in methylphenidate responders. Biological Psychiatry, 42(6), 434445.CrossRefGoogle ScholarPubMed
Supplementary material: File

le Sommer et al. supplementary material

Figures S1-S9

Download le Sommer et al. supplementary material(File)
File 153.1 KB