Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T18:50:39.581Z Has data issue: false hasContentIssue false

Dynamics of diurnal cortisol and alpha-amylase secretion and their associations with PTSD onset in recent interpersonal trauma survivors

Published online by Cambridge University Press:  12 October 2021

Kerry L. Kinney*
Affiliation:
Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, USA
Uma Rao
Affiliation:
Departments of Psychiatry & Human Behavior, Pediatrics and Psychological Science, Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, California, USA Children's Hospital of Orange County, Orange, CA, USA
Brooklynn Bailey
Affiliation:
Department of Psychology, the Ohio State University, Columbus, Ohio, USA
Natalie Hellman
Affiliation:
Department of Psychology, University of Tulsa, Tulsa, Oklahoma, USA
Chris Kelly
Affiliation:
Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, USA
Nicholas W. McAfee
Affiliation:
Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, USA
Matthew C. Morris
Affiliation:
Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, USA
*
Author for correspondence: Kerry L. Kinney, E-mail: kkinney@umc.edu

Abstract

Background

Dysfunction in major stress response systems during the acute aftermath of trauma may contribute to risk for developing posttraumatic stress disorder (PTSD). The current study investigated how PTSD diagnosis and symptom severity, depressive symptoms, and childhood trauma uniquely relate to diurnal neuroendocrine secretion (cortisol and alpha-amylase rhythms) in women who recently experienced interpersonal trauma compared to non-traumatized controls (NTCs).

Method

Using a longitudinal design, we examined diurnal cortisol and alpha-amylase rhythms in 98 young women (n = 57 exposed to recent interpersonal trauma, n = 41 NTCs). Participants provided saliva samples and completed symptom measures at baseline and 1-, 3-, and 6-month follow-up.

Results

Multilevel models (MLMs) revealed lower waking cortisol predicted the development of PTSD in trauma survivors and distinguished at-risk women from NTCs. Women with greater childhood trauma exposure exhibited flatter diurnal cortisol slopes. Among trauma-exposed individuals, lower waking cortisol levels were associated with higher concurrent PTSD symptom severity. Regarding alpha-amylase, MLMs revealed women with greater childhood trauma exposure exhibited higher waking alpha-amylase and slower diurnal alpha-amylase increase.

Conclusions

Results suggest lower waking cortisol in the acute aftermath of trauma may be implicated in PTSD onset and maintenance. Findings also suggest childhood trauma may predict a different pattern of dysfunction in stress response systems following subsequent trauma exposure than the stress system dynamics associated with PTSD risk; childhood trauma appears to be associated with flattened diurnal cortisol and alpha-amylase slopes, as well as higher waking alpha-amylase.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, E. K., Hawkley, L. C., Kudielka, B. M., & Cacioppo, J. T. (2006). Day-to-day dynamics of experience-cortisol associations in a population-based sample of older adults. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 1705817063. https://doi.org/10.1073/pnas.060503103.CrossRefGoogle Scholar
Adam, E. K., Quinn, M. E., Tavernier, R., McQuillan, M. T., Dahlke, K. A., & Gilbert, K. E. (2017). Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology, 83, 2541.CrossRefGoogle ScholarPubMed
Agorastos, A., Nicolaides, N. C., Bozikas, V. P., Chrousos, G. P., & Pervanidou, P. (2020). Multilevel interactions of stress and circadian system: Implications for traumatic stress. Frontiers in Psychiatry, 10, 1003. https://doi.org/10.3389/fpsyt.2019.01003.CrossRefGoogle ScholarPubMed
Beck, A. T., Steer, R. A., Ball, R., & Ranieri, W. F. (1996). Comparison of Beck Depression Inventories-IA and -II in psychiatric outpatients. Journal of Personality Assessment, 67(3), 588597. https://doi.org/10.1207/s15327752jpa6703_13.CrossRefGoogle Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289300.Google Scholar
Bernstein, D. P., Fink, L., Handelsman, L., Foote, J., Lovejoy, M., Wenzel, K., … Ruggiero, J. (1994). Initial reliability and validity of a new retrospective measure of child abuse and neglect. American Journal of Psychiatry, 151(8), 11321136.Google ScholarPubMed
Blake, D. D., Weathers, F. W., Nagy, L. M., Kaloupek, D. G., Gusman, F. D., Charney, D. S., & Keane, T. M. (1995). The development of a clinician-administered PTSD scale. Journal of Traumatic Stress, 8(1), 7590. https://doi.org/10.1002/jts.2490080106.CrossRefGoogle ScholarPubMed
Bothe, T., Jacob, J., Kröger, C., & Walker, J. (2020). How expensive are post-traumatic stress disorders? Estimating incremental health care and economic costs on anonymised claims data. The European Journal of Health Economics, 21, 917930.CrossRefGoogle ScholarPubMed
Buckley, T. C., & Kaloupek, D. G. (2001). A meta-analytic examination of basal cardiovascular activity in posttraumatic stress disorder. Psychosomatic Medicine, 63(4), 585594.CrossRefGoogle ScholarPubMed
Delahanty, D. L., & Nugent, N. R. (2006). Predicting PTSD prospectively based on prior trauma history and immediate biological responses. Annals of the New York Academy of Sciences, 1071(1), 2740.CrossRefGoogle ScholarPubMed
de Quervain, D. J.-F., Aerni, A., Schelling, G., & Roozendaal, B. (2009). Glucocorticoids and the regulation of memory in health and disease. Frontiers in Neuroendocrinology, 30(3), 358370.CrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (2005). Structured clinical interview for DSM-IV-TR axis I disorders: Patient edition. Biometrics Research Department, Columbia University New York, NY.Google Scholar
Hall, M., Vasko, R., Buysse, D., Ombao, H., Chen, Q., Cashmere, J. D., … Thayer, J. F. (2004). Acute stress affects heart rate variability during sleep. Psychosomatic Medicine, 66(1), 5662.Google ScholarPubMed
Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap) – A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377381. https://doi.org/10.1016/j.jbi.2008.08.010.CrossRefGoogle ScholarPubMed
Juruena, M. F., Bocharova, M., Agustini, B., & Young, A. H. (2018). Atypical depression and non-atypical depression: Is HPA axis function a biomarker? A systematic review. Journal of Affective Disorders, 233, 4567.CrossRefGoogle ScholarPubMed
Keeshin, B. R., Strawn, J. R., Out, D., Granger, D. A., & Putnam, F. W. (2015). Elevated salivary alpha amylase in adolescent sexual abuse survivors with posttraumatic stress disorder symptoms. Journal of Child and Adolescent Psychopharmacology, 25(4), 344350.CrossRefGoogle ScholarPubMed
Kilpatrick, D. G., Resnick, H. S., Milanak, M. E., Miller, M. W., Keyes, K. M., & Friedman, M. J. (2013). National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria. Journal of Traumatic Stress, 26(5), 537547.CrossRefGoogle ScholarPubMed
Kirschbaum, C., & Hellhammer, D. H. (1989). Salivary cortisol in psychobiological research: An overview. Neuropsychobiology, 22(3), 150169.CrossRefGoogle ScholarPubMed
Liberzon, I., & Abelson, J. L. (2016). Context processing and the neurobiology of post-traumatic stress disorder. Neuron, 92(1), 1430.CrossRefGoogle ScholarPubMed
Meewisse, M.-L., Reitsma, J. B., De Vries, G.-J., Gersons, B. P., & Olff, M. (2007). Cortisol and post-traumatic stress disorder in adults: Systematic review and meta-analysis. The British Journal of Psychiatry, 191(5), 387392.CrossRefGoogle ScholarPubMed
Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic–pituitary–adrenocortical axis in humans. Psychological Bulletin, 133(1), 2545. https://doi.org/10.1037/0033-2909.133.1.25.CrossRefGoogle ScholarPubMed
Morris, M. C., Bailey, B., Hellman, N., Williams, A., Lannon, E. W., Kutcher, M. E., … Rao, U. (2020). Dynamics and determinants of cortisol and alpha-amylase responses to repeated stressors in recent interpersonal trauma survivors. Psychoneuroendocrinology, 122, 104899.CrossRefGoogle ScholarPubMed
Morris, M. C., Compas, B. E., & Garber, J. (2012). Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: A systematic review and meta-analysis. Clinical Psychology Review, 32(4), 301315.CrossRefGoogle ScholarPubMed
Morris, M. C., Hellman, N., Abelson, J. L., & Rao, U. (2016). Cortisol, heart rate, and blood pressure as early markers of PTSD risk: A systematic review and meta-analysis. Clinical Psychology Review, 49, 7991. https://doi.org/10.1016/j.cpr.2016.09.001.CrossRefGoogle Scholar
Morris, M. C., & Rao, U. (2013). Psychobiology of PTSD in the acute aftermath of trauma: Integrating research on coping, HPA function and sympathetic nervous system activity. Asian Journal of Psychiatry, 6(1), 321. https://doi.org/10.1016/j.ajp.2012.07.012.Google ScholarPubMed
Nater, U. M., & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology, 34(4), 486496.CrossRefGoogle ScholarPubMed
Nater, U. M., Rohleder, N., Schlotz, W., Ehlert, U., & Kirschbaum, C. (2007). Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology, 32(4), 392401.CrossRefGoogle ScholarPubMed
Nicholson, E. L., Bryant, R. A., & Felmingham, K. L. (2014). Interaction of noradrenaline and cortisol predicts negative intrusive memories in posttraumatic stress disorder. Neurobiology of Learning and Memory, 112, 204211.CrossRefGoogle ScholarPubMed
Nicolson, N. A., & Ponnamperuma, T. (2019). Gender moderates diurnal cortisol in relation to trauma and PTSD symptoms: A study in Sri Lankan adolescents. Psychoneuroendocrinology, 104, 122131.CrossRefGoogle ScholarPubMed
O'Donnell, T., Hegadoren, K. M., & Coupland, N. (2004). Noradrenergic mechanisms in the pathophysiology of post-traumatic stress disorder. Neuropsychobiology, 50(4), 273283.CrossRefGoogle ScholarPubMed
Pole, N. (2007). The psychophysiology of posttraumatic stress disorder: A meta-analysis. Psychological Bulletin, 133(5), 725746. https://doi.org/10.1037/0033-2909.133.5.725.CrossRefGoogle ScholarPubMed
Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31(4), 437448. https://doi.org/10.3102/10769986031004437.CrossRefGoogle Scholar
Rauch, S. A., King, A., Kim, H. M., Powell, C., Rajaram, N., Venners, M., … Liberzon, I. (2020). Cortisol awakening response in PTSD treatment: Predictor or mechanism of change. Psychoneuroendocrinology, 118, 104714.CrossRefGoogle ScholarPubMed
Raudenbush, S., Bryk, A., Cheong, Y., Congdon, R., & du Toit, M. (2019). HLM 8: Hierarchical linear and nonlinear modeling. Skokie, IL: Scientific Software International.Google Scholar
Rothbaum, B. O., Kearns, M. C., Price, M., Malcoun, E., Davis, M., Ressler, K. J., … Houry, D. (2012). Early intervention may prevent the development of posttraumatic stress disorder: A randomized pilot civilian study with modified prolonged exposure. Biological Psychiatry, 72(11), 957963. https://doi.org/10.1016/j.biopsych.2012.06.002.CrossRefGoogle ScholarPubMed
Sadeh, A., Keinan, G., & Daon, K. (2004). Effects of stress on sleep: The moderating role of coping style. Health Psychology, 23(5), 542.CrossRefGoogle ScholarPubMed
Shalev, A. Y., Gevonden, M., Ratanatharathorn, A., Laska, E., Van Der Mei, W. F., Qi, W., … Delahanty, D. (2019). Estimating the risk of PTSD in recent trauma survivors: Results of the International Consortium to Predict PTSD (ICPP). World Psychiatry, 18(1), 7787.CrossRefGoogle Scholar
Shirtcliff, E. A., & Essex, M. J. (2008). Concurrent and longitudinal associations of basal and diurnal cortisol with mental health symptoms in early adolescence. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, 50(7), 690703.CrossRefGoogle ScholarPubMed
Sijbrandij, M., Kleiboer, A., Bisson, J. I., Barbui, C., & Cuijpers, P. (2015). Pharmacological prevention of post-traumatic stress disorder and acute stress disorder: A systematic review and meta-analysis. The Lancet. Psychiatry, 2(5), 413421. https://doi.org/10.1016/s2215-0366(14)00121-7.CrossRefGoogle ScholarPubMed
Smyth, J., Ockenfels, M. C., Porter, L., Kirschbaum, C., Hellhammer, D. H., & Stone, A. A. (1998). Stressors and mood measured on a momentary basis are associated with salivary cortisol secretion. Psychoneuroendocrinology, 23(4), 353370.CrossRefGoogle ScholarPubMed
Speer, K. E., Semple, S., Naumovski, N., D'Cunha, N. M., & McKune, A. J. (2019). HPA axis function and diurnal cortisol in post-traumatic stress disorder: A systematic review. Neurobiology of Stress, 11, 100180.CrossRefGoogle ScholarPubMed
Stetler, C., Dickerson, S. S., & Miller, G. E. (2004). Uncoupling of social zeitgebers and diurnal cortisol secretion in clinical depression. Psychoneuroendocrinology, 29(10), 12501259.CrossRefGoogle ScholarPubMed
Steudte-Schmiedgen, S., Kirschbaum, C., Alexander, N., & Stalder, T. (2016). An integrative model linking traumatization, cortisol dysregulation and posttraumatic stress disorder: Insight from recent hair cortisol findings. Neuroscience and Biobehavioral Reviews, 69, 124135. https://doi.org/10.1016/j.neubiorev.2016.07.015.CrossRefGoogle ScholarPubMed
Thoma, M. V., Joksimovic, L., Kirschbaum, C., Wolf, J. M., & Rohleder, N. (2012). Altered salivary alpha-amylase awakening response in Bosnian war refugees with posttraumatic stress disorder. Psychoneuroendocrinology, 37(6), 810817.CrossRefGoogle ScholarPubMed
Thompson, D. J., Weissbecker, I., Cash, E., Simpson, D. M., Daup, M., & Sephton, S. E. (2015). Stress and cortisol in disaster evacuees: An exploratory study on associations with social protective factors. Applied Psychophysiology and Biofeedback, 40(1), 3344.CrossRefGoogle Scholar
Van Reeth, O., Weibel, L., Spiegel, K., Leproult, R., Dugovic, C., & Maccari, S. (2000). Interactions between stress and sleep: From basic research to clinical situations. Sleep medicine Reviews, 4(2), 201220.CrossRefGoogle Scholar
Weathers, F. W., Ruscio, A. M., & Keane, T. M. (1999). Psychometric properties of nine scoring rules for the clinician-administered posttraumatic stress disorder scale. Psychological Assessment, 11(2), 124.CrossRefGoogle Scholar
Wessa, M., Rohleder, N., Kirschbaum, C., & Flor, H. (2006). Altered cortisol awakening response in posttraumatic stress disorder. Psychoneuroendocrinology, 31(2), 209215. https://doi.org/10.1016/j.psyneuen.2005.06.010.CrossRefGoogle ScholarPubMed
Yahyavi, S. T., Zarghami, M., & Marwah, U. (2014). A review on the evidence of transgenerational transmission of posttraumatic stress disorder vulnerability. Brazilian Journal of Psychiatry, 36(1), 8994.CrossRefGoogle ScholarPubMed
Yehuda, R. (2002). Clinical relevance of biologic findings in PTSD. Psychiatric Quarterly, 73(2), 123133.CrossRefGoogle ScholarPubMed
Supplementary material: File

Kinney et al. supplementary material

Kinney et al. supplementary material

Download Kinney et al. supplementary material(File)
File 25.7 KB