Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T18:45:37.505Z Has data issue: false hasContentIssue false

Developmental trajectories of autistic social traits in the general population

Published online by Cambridge University Press:  22 June 2021

Richard Pender
Affiliation:
University College London, Division of Psychiatry, Maple House, 149 Tottenham Court Road, London W1T 7BN, UK
Pasco Fearon
Affiliation:
University College London, Research Department of Clinical, Educational and Health Psychology, 1-19 Torrington Place, London WC1E 7HB, UK
Beate St Pourcain
Affiliation:
Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands Donders Institute for Brain, Cognition and Behaviour, Radboud University, The Netherlands MRC Integrative Epidemiology Unit, University of Bristol, UK
Jon Heron
Affiliation:
Bristol Medical School, University of Bristol, Population Health Sciences, Oakfield House, Clifton BS8 2BN, UK
Will Mandy*
Affiliation:
University College London, Research Department of Clinical, Educational and Health Psychology, 1-19 Torrington Place, London WC1E 7HB, UK
*
Author for correspondence: Will Mandy, E-mail: w.mandy@ucl.ac.uk

Abstract

Background

Autistic people show diverse trajectories of autistic traits over time, a phenomenon labelled ‘chronogeneity’. For example, some show a decrease in symptoms, whilst others experience an intensification of difficulties. Autism spectrum disorder (ASD) is a dimensional condition, representing one end of a trait continuum that extends throughout the population. To date, no studies have investigated chronogeneity across the full range of autistic traits. We investigated the nature and clinical significance of autism trait chronogeneity in a large, general population sample.

Methods

Autistic social/communication traits (ASTs) were measured in the Avon Longitudinal Study of Parents and Children using the Social and Communication Disorders Checklist (SCDC) at ages 7, 10, 13 and 16 (N = 9744). We used Growth Mixture Modelling (GMM) to identify groups defined by their AST trajectories. Measures of ASD diagnosis, sex, IQ and mental health (internalising and externalising) were used to investigate external validity of the derived trajectory groups.

Results

The selected GMM model identified four AST trajectory groups: (i) Persistent High (2.3% of sample), (ii) Persistent Low (83.5%), (iii) Increasing (7.3%) and (iv) Decreasing (6.9%) trajectories. The Increasing group, in which females were a slight majority (53.2%), showed dramatic increases in SCDC scores during adolescence, accompanied by escalating internalising and externalising difficulties. Two-thirds (63.6%) of the Decreasing group were male.

Conclusions

Clinicians should note that for some young people autism-trait-like social difficulties first emerge during adolescence accompanied by problems with mood, anxiety, conduct and attention. A converse, majority-male group shows decreasing social difficulties during adolescence.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. K., Maye, M. P., & Lord, C. (2011). Changes in maladaptive behaviors from midchildhood to young adulthood in autism spectrum disorder. American Journal on Intellectual and Developmental Disabilities, 116(5), 381397. doi: 10.1352/1944-7558-116.5.381.CrossRefGoogle ScholarPubMed
Angold, A., Costello, E. J., Messer, S. C., Pickles, A., Winder, F., & Silver, D. (1995). The development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. International Journal of Methods in Psychiatric Research, 5, 237249.Google Scholar
Bargiela, S., Steward, R., & Mandy, W. (2016). The experiences of late-diagnosed women with autism spectrum conditions: An investigation of the female autism phenotype. Journal of Autism and Developmental Disorders, 46(10), 32813294. doi: 10.1007/s10803-016-2872-8.CrossRefGoogle ScholarPubMed
Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8(3), 338. doi: 10.1037/1082-989X.8.3.338.CrossRefGoogle ScholarPubMed
Boyd, A., Golding, J., Macleod, J., Lawlor, D. A., Fraser, A., Henderson, J., … Davey Smith, G. (2013). Cohort profile: The ‘children of the 90s’ – the index offspring of the Avon Longitudinal Study of Parents and Children. International Journal of Epidemiology, 42(1), 111127. doi: 10.1093/ije/dys064.CrossRefGoogle ScholarPubMed
Charman, T., Pickles, A., Simonoff, E., Chandler, S., Loucas, T., & Baird, G. (2011). IQ in children with autism spectrum disorders: Data from the Special Needs and Autism Project (SNAP). Psychological Medicine, 41(3), 619627. doi: 10.1017/S0033291710000991.CrossRefGoogle ScholarPubMed
Constantino, J. N. (2009). How continua converge in nature: Cognition, social competence, and autistic syndromes. Journal of the American Academy of Child and Adolescent Psychiatry, 48(2), 97. doi: 10.1097/CHI.0b013e318193069e.CrossRefGoogle ScholarPubMed
Delobel-Ayoub, M., Ehlinger, V., Klapouszczak, D., Maffre, T., Raynaud, J. P., Delpierre, C., & Arnaud, C. (2015). Socioeconomic disparities and prevalence of autism spectrum disorders and intellectual disability. PLoS ONE, 10(11), e0141964. doi: 10.1371/journal.pone.0131964.CrossRefGoogle ScholarPubMed
Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey Smith, G., … Ring, S. (2012). Cohort profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. International Journal of Epidemiology, 42(1), 97110. doi: 10.1093/ije/dys066.CrossRefGoogle ScholarPubMed
Georgiades, S., Bishop, S. L., & Frazier, T. (2017). Editorial perspective: Longitudinal research in autism – introducing the concept of ‘chronogeneity’. Journal of Child Psychology and Psychiatry, 58(5), 634636. doi: 10.1111/jcpp.12690.CrossRefGoogle ScholarPubMed
Goodman, R. (2001). Psychometric properties of the strengths and difficulties questionnaire. Journal of the American Academy of Child & Adolescent Psychiatry, 40(11), 1337–1145. doi: 10.1097/00004583-200111000-00015.CrossRefGoogle ScholarPubMed
Goodman, A., & Goodman, R. (2009). Strengths and difficulties questionnaire as a dimensional measure of child mental health. Journal of the American Academy of Child & Adolescent Psychiatry, 48(4), 400403. doi: 10.1097/CHI.0b013e3181985068.CrossRefGoogle ScholarPubMed
Gotham, K., Pickles, A., & Lord, C. (2012). Trajectories of autism severity in children using standardized ADOS scores. Pediatrics, 130(5), e1278e1284. doi: 10.1542/peds.2011-3668.CrossRefGoogle ScholarPubMed
Grimm, K. J., Mazza, G. L., & Davoudzadeh, P. (2017). Model selection in finite mixture models: A k-fold cross-validation approach. Structural Equation Modeling: A Multidisciplinary Journal, 24(2), 246256. doi: 10.1080/10705511.2016.1250638.CrossRefGoogle Scholar
Guyatt, A. L., Heron, J., Knight, B. L. C., Golding, J., & Rai, D. (2015). Digit ratio and autism spectrum disorders in the Avon Longitudinal Study of Parents and Children: A birth cohort study. BMJ Open, 5(8). doi: 10.1136/bmjopen-2014-007433.CrossRefGoogle ScholarPubMed
Heron, J., Croudace, T. J., Barker, E. D., & Tilling, K. (2015). A comparison of approaches for assessing covariate effects in latent class analysis. Longitudinal and Life Course Studies, 6(4), 420434. doi: 10.14301/llcs.v6i4.322.CrossRefGoogle Scholar
Hosozawa, M., Sacker, A., Mandy, W., Midouhas, E., Flouri, E., & Cable, N. (2020). Determinants of an autism spectrum disorder diagnosis in childhood and adolescence: Evidence from the UK Millennium Cohort Study. Autism, 24(6), 15571565. doi: 10.1177/1362361320913671.CrossRefGoogle ScholarPubMed
Hull, L., Mandy, W., & Petrides, K. V. (2017). Behavioural and cognitive sex/gender differences in autism spectrum condition and typically developing males and females. Autism, 21(6), 706727. doi: 10.1177/1362361316669087.CrossRefGoogle ScholarPubMed
Jones, L., Goddard, L., Hill, E. L., Henry, L. A., & Crane, L. (2014). Experiences of receiving a diagnosis of autism spectrum disorder: A survey of adults in the United Kingdom. Journal of Autism and Developmental Disorders, 44(12), 30333044.CrossRefGoogle ScholarPubMed
Kim, S. H., Bal, V. H., Benrey, N., Choi, Y. B., Guthrie, W., Colombi, C., & Lord, C. (2018). Variability in autism symptom trajectories using repeated observations from 14 to 36 months of age. Journal of the American Academy of Child & Adolescent Psychiatry, 57(11), 837848. doi: 10.1016/j.jaac.2018.05.026.CrossRefGoogle ScholarPubMed
Kopp, S., & Gillberg, C. (2011). The Autism Spectrum Screening Questionnaire (ASSQ)-Revised Extended Version (ASSQ-REV): An instrument for better capturing the autism phenotype in girls? A preliminary study involving 191 clinical cases and community controls. Research in Developmental Disabilities, 32(6), 28752888. doi: 10.1016/j.ridd.2011.05.017.CrossRefGoogle ScholarPubMed
Lai, M. C., Lombardo, M. V., Ruigrok, A. N., Chakrabarti, B., Auyeung, B., Szatmari, P., … Baron-Cohen, S. (2017). Quantifying and exploring camouflaging in men and women with autism. Autism, 21(6), 690702. doi: 10.1177/1362361316671012.CrossRefGoogle ScholarPubMed
Loomes, R., Hull, L., & Mandy, W. P. (2017). What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. Journal of the American Academy of Child & Adolescent Psychiatry, 56(6), 466474. doi: 10.1016/j.jaac.2017.03.013.CrossRefGoogle ScholarPubMed
Lord, C., & Luyster, R. (2006). Early diagnosis of children with autism spectrum disorders. Clinical Neuroscience Research, 6(3–4), 189194. doi: 10.1016/j.cnr.2006.06.005.CrossRefGoogle Scholar
Lord, C., Luyster, R., Guthrie, W., & Pickles, A. (2012) Patterns of developmental trajectories in toddlers with autism spectrum disorder. Journal of Consulting and Clinical Psychology, 80(3), 477. doi: 10.1037/a0027214.CrossRefGoogle ScholarPubMed
Lounds Taylor, J. (2017). When is a good outcome actually good? Autism, 21(8), 918919. doi: 10.1177/1362361317728821.CrossRefGoogle ScholarPubMed
Mandy, W., Pellicano, L., St Pourcain, B., Skuse, D., & Heron, J. (2018) The development of autistic social traits across childhood and adolescence in males and females. Journal of Child Psychology and Psychiatry, 59(11), 11431151. doi: 10.1111/jcpp.12913.CrossRefGoogle ScholarPubMed
Murphy, G. H., Beadle-Brown, J., Wing, L., Gould, J., Shah, A., & Holmes, N. (2005). Chronicity of challenging behaviours in people with severe intellectual disabilities and/or autism: A total population sample. Journal of Autism and Developmental Disorders, 35(4), 405418. doi: 10.1007/s10803-005-5030-2.CrossRefGoogle ScholarPubMed
Muthén, B. (2003). Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003). Psychological Methods, 8(3), 367393. doi: 10.1037/1082-989X.8.3.369.CrossRefGoogle ScholarPubMed
Orinstein, A., Tyson, K. E., Suh, J., Troyb, E., Helt, M., Rosenthal, M., … Fein, D. A. (2015). Psychiatric symptoms in youth with a history of autism and optimal outcome. Journal of Autism and Developmental Disorders, 45(11), 37033714. doi: 10.1007/s10803-015-2520-8.CrossRefGoogle ScholarPubMed
Ozonoff, S., Gangi, D., Hanzel, E. P., Hill, A., Hill, M. M., Miller, M., … Iosif, A. M. (2018). Onset patterns in autism: Variation across informants, methods, and timing. Autism Research, 11(5), 788797. doi: 10.1002/aur.1943.CrossRefGoogle ScholarPubMed
Pender, R., Fearon, P., Heron, J., & Mandy, W. (2020). The longitudinal heterogeneity of autistic traits: A systematic review. Research in Autism Spectrum Disorders, 79, 101671. doi: 10.1016/j.rasd.2020.101671.CrossRefGoogle Scholar
Picci, G., & Scherf, K. S. (2015). A two-hit model of autism: Adolescence as the second hit. Clinical Psychological Science, 3(3), 349371.CrossRefGoogle ScholarPubMed
Pickard, H., Rijsdijk, F., Happé, F., & Mandy, W. (2017). Are social and communication difficulties a risk factor for the development of social anxiety? Journal of the American Academy of Child & Adolescent Psychiatry, 56(4), 344351. doi: 10.1016/j.jaac.2017.01.007.CrossRefGoogle ScholarPubMed
Rai, D., Culpin, I., Heuvelman, H., Magnusson, C. M., Carpenter, P., Jones, H. J., … Pearson, R. M. (2018). Association of autistic traits with depression from childhood to age 18 years. JAMA Psychiatry, 75(8), 835843. doi: 10.1001/jamapsychiatry.2018.1323.CrossRefGoogle ScholarPubMed
Robinson, E. B., St Pourcain, B., Anttila, V., Kosmicki, J. A., Bulik-Sullivan, B., Grove, J., … Daly, M. J. (2016). Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nature Genetics, 48(5), 552555. doi: 10.1038/ng.3529.CrossRefGoogle ScholarPubMed
Saito, A., Stickley, A., Haraguchi, H., Takahashi, H., Ishitobi, M., & Kamio, Y. (2017). Association between autistic traits in preschool children and later emotional/behavioral outcomes. Journal of Autism and Developmental Disorders, 47(11), 33333346. doi: 10.1007/s10803-017-3245-7.CrossRefGoogle ScholarPubMed
Sher, K. J., Jackson, K. M., & Steinley, D. (2011). Alcohol use trajectories and the ubiquitous cat's cradle: Cause for concern? Journal of Abnormal Psychology, 120(2), 322. doi: 10.1037/a0021813.CrossRefGoogle ScholarPubMed
Skuse, D. H., Mandy, W., & Scourfield, J. (2005). Measuring autistic traits: Heritability, reliability and validity of the Social and Communication Disorders Checklist. The British Journal of Psychiatry, 187(6), 568572. doi: 10.1192/bjp.187.6.568.CrossRefGoogle ScholarPubMed
Skuse, D. H., Mandy, W., Steer, C., Miller, L. L., Goodman, R., Lawrence, K., … Golding, J. (2009). Social communication competence and functional adaptation in a general population of children: Preliminary evidence for sex-by-verbal IQ differential risk. Journal of the American Academy of Child & Adolescent Psychiatry, 48(2), 128137. doi: 10.1097/CHI.0b013e31819176b8.CrossRefGoogle Scholar
St Pourcain, B., Eaves, L. J., Ring, S. M., Fisher, S. E., Medland, S., Evans, D. M., & Davey Smith, G. (2018). Developmental changes within the genetic architecture of social communication behavior: A multivariate study of genetic variance in unrelated individuals. Biological Psychiatry, 83(7), 598606. doi: 10.1016/j.biopsych.2017.09.020.CrossRefGoogle ScholarPubMed
St Pourcain, B. S., Mandy, W. P., Heron, J., Golding, J., Smith, G. D., & Skuse, D. H. (2011). Links between co-occurring social-communication and hyperactive-inattentive trait trajectories. Journal of the American Academy of Child & Adolescent Psychiatry, 50(9), 892902. doi: 10.1016/j.jaac.2011.05.015.CrossRefGoogle ScholarPubMed
St Pourcain, B., Skuse, D. H., Mandy, W. P., Wang, K., Hakonarson, H., Timpson, N. J., … Davey Smith, G. (2014). Variability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence. Molecular Autism, 5(1), 18. doi: 10.1186/2040-2392-5-18.CrossRefGoogle ScholarPubMed
Szatmari, P., Georgiades, S., Duku, E., Bennett, T. A., Bryson, S., Fombonne, E., … Thompson, A. (2015). Developmental trajectories of symptom severity and adaptive functioning in an inception cohort of preschool children with autism spectrum disorder. JAMA Psychiatry, 72(3), 276283. doi: 10.1001/jamapsychiatry.2014.2463.CrossRefGoogle Scholar
Thabrew, H., Stasiak, K., Bavin, L. M., Frampton, C., & Merry, S. (2018). Validation of the mood and feelings questionnaire (mfq) and short mood and feelings questionnaire (smfq) in New Zealand help-seeking adolescents. International Journal of Methods in Psychiatric Research, 27(3), e1610. doi: 10.1002/mpr.1610.CrossRefGoogle ScholarPubMed
Turner, N., Joinson, C., Peters, T. J., Wiles, N., & Lewis, G. (2014). Validity of the Short Mood and Feelings Questionnaire in late adolescence. Psychological Assessment, 26(3), 752. doi: 10.1037/a0036572.CrossRefGoogle ScholarPubMed
Venker, C. E., Ray-Subramanian, C. E., Bolt, D. M., & Weismer, S. E. (2014). Trajectories of autism severity in early childhood. Journal of Autism and Developmental Disorders, 44(3), 546563. doi: 10.1007/s10803-013-1903-y.CrossRefGoogle ScholarPubMed
Wechsler, D. (1991). The Wechsler Intelligence Scale for Children. (3rd ed.). San Antonio, TX: The Psychological Corp.Google Scholar
Williams, E., Thomas, K., Sidebotham, H., & Emond, A. (2008). Prevalence and characteristics of autistic spectrum disorders in the ALSPAC cohort. Developmental Medicine & Child Neurology, 50(9), 672677. doi: 10.1111/j.1469-8749.2008.03042.x.CrossRefGoogle ScholarPubMed
Zablotsky, B., Black, L. I., Maenner, M. J., Schieve, L. A., & Blumberg, S. J. (2015). Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey. National Health Statistics Reports, 87, 120, Retrieved from https://pubmed.ncbi.nlm.nih.gov/26632847/.Google Scholar
Supplementary material: File

Pender et al. supplementary material

Pender et al. supplementary material

Download Pender et al. supplementary material(File)
File 33.3 KB