Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T11:43:43.678Z Has data issue: false hasContentIssue false

Development of a model to predict antidepressant treatment response for depression among Veterans

Published online by Cambridge University Press:  15 July 2022

Victor Puac-Polanco
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
Hannah N. Ziobrowski
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
Eric L. Ross
Affiliation:
Department of Psychiatry, McLean Hospital, Belmont, MA, USA Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA
Howard Liu
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, MA, USA Center of Excellence for Suicide Prevention, Canandaigua VA Medical Center, Canandaigua, NY, USA
Brett Turner
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, MA, USA Center of Excellence for Suicide Prevention, Canandaigua VA Medical Center, Canandaigua, NY, USA Harvard T.H. Chan School of Public Health, Boston, MA, USA
Ruifeng Cui
Affiliation:
Department of Veterans Affairs, VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Health Care System, Pittsburgh, PA, USA Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
Lucinda B. Leung
Affiliation:
Center for the Study of Healthcare Innovation, Implementation, and Policy, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA Division of General Internal Medicine and Health Services Research, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
Robert M. Bossarte
Affiliation:
Center of Excellence for Suicide Prevention, Canandaigua VA Medical Center, Canandaigua, NY, USA Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, USA
Corey Bryant
Affiliation:
Center for Clinical Management Research, VA Ann Arbor, Ann Arbor, MI, USA
Jutta Joormann
Affiliation:
Department of Psychology, Yale University, New Haven, CT, USA
Andrew A. Nierenberg
Affiliation:
Department of Psychiatry, Harvard Medical School, Boston, MA, USA Department of Psychiatry, Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital, Boston, MA, USA
David W. Oslin
Affiliation:
VISN 4 Mental Illness Research, Education, and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Wilfred R. Pigeon
Affiliation:
Center of Excellence for Suicide Prevention, Canandaigua VA Medical Center, Canandaigua, NY, USA Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
Edward P. Post
Affiliation:
Center for Clinical Management Research, VA Ann Arbor, Ann Arbor, MI, USA Department of Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
Nur Hani Zainal
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
Alan M. Zaslavsky
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
Jose R. Zubizarreta
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, MA, USA Department of Statistics, Harvard University, Cambridge, MA, USA Department of Biostatistics, Harvard University, Cambridge, MA, USA
Alex Luedtke
Affiliation:
Department of Statistics, University of Washington, Seattle, WA, USA Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
Chris J. Kennedy
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA
Andrea Cipriani
Affiliation:
Department of Psychiatry, University of Oxford, Oxford, UK
Toshiaki A. Furukawa
Affiliation:
Department of Health Promotion and Human Behavior, School of Public Health, Kyoto University Graduate School of Medicine, Kyoto, Japan
Ronald C. Kessler*
Affiliation:
Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
*
Author for correspondence: Ronald C. Kessler, E-mail: kessler@hcp.med.harvard.edu

Abstract

Background

Only a limited number of patients with major depressive disorder (MDD) respond to a first course of antidepressant medication (ADM). We investigated the feasibility of creating a baseline model to determine which of these would be among patients beginning ADM treatment in the US Veterans Health Administration (VHA).

Methods

A 2018–2020 national sample of n = 660 VHA patients receiving ADM treatment for MDD completed an extensive baseline self-report assessment near the beginning of treatment and a 3-month self-report follow-up assessment. Using baseline self-report data along with administrative and geospatial data, an ensemble machine learning method was used to develop a model for 3-month treatment response defined by the Quick Inventory of Depression Symptomatology Self-Report and a modified Sheehan Disability Scale. The model was developed in a 70% training sample and tested in the remaining 30% test sample.

Results

In total, 35.7% of patients responded to treatment. The prediction model had an area under the ROC curve (s.e.) of 0.66 (0.04) in the test sample. A strong gradient in probability (s.e.) of treatment response was found across three subsamples of the test sample using training sample thresholds for high [45.6% (5.5)], intermediate [34.5% (7.6)], and low [11.1% (4.9)] probabilities of response. Baseline symptom severity, comorbidity, treatment characteristics (expectations, history, and aspects of current treatment), and protective/resilience factors were the most important predictors.

Conclusions

Although these results are promising, parallel models to predict response to alternative treatments based on data collected before initiating treatment would be needed for such models to help guide treatment selection.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, P. C., & Steyerberg, E. W. (2014). Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Statistics in Medicine, 33(3), 517535. doi: 10.1002/sim.5941CrossRefGoogle ScholarPubMed
Austin, P. C., & Steyerberg, E. W. (2019). The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models. Statistics in Medicine, 38(21), 40514065. doi: 10.1002/sim.8281CrossRefGoogle ScholarPubMed
Barth, J., Kern, A., Lüthi, S., & Witt, C. M. (2019). Assessment of patients’ expectations: Development and validation of the Expectation for Treatment Scale (ETS). BMJ Open, 9(6), e026712. doi: 10.1136/bmjopen-2018-026712CrossRefGoogle ScholarPubMed
Benazzi, F. (2006). Various forms of depression. Dialogues in Clinical Neuroscience, 8(2), 151161. doi: 10.31887/DCNS.2006.8.2/fbenazziCrossRefGoogle ScholarPubMed
Buckman, J. E. J., Cohen, Z. D., O'Driscoll, C., Fried, E. I., Saunders, R., Ambler, G., … Pilling, S. (2021a). Predicting prognosis for adults with depression using individual symptom data: A comparison of modelling approaches. Psychological Medicine, Advance online publication. doi: 10.1017/s0033291721001616CrossRefGoogle Scholar
Buckman, J. E. J., Saunders, R., Arundell, L. L., Oshinowo, I. D., Cohen, Z. D., O'Driscoll, C., … Pilling, S. (2022). Life events and treatment prognosis for depression: A systematic review and individual patient data meta-analysis. Journal of Affective Disorders, 299, 298308. doi: 10.1016/j.jad.2021.12.030CrossRefGoogle ScholarPubMed
Buckman, J. E. J., Saunders, R., Cohen, Z. D., Barnett, P., Clarke, K., Ambler, G., … Pilling, S. (2021b). The contribution of depressive ‘disorder characteristics’ to determinations of prognosis for adults with depression: An individual patient data meta-analysis. Psychological Medicine, 51(7), 10681081. doi: 10.1017/s0033291721001367CrossRefGoogle ScholarPubMed
Buckman, J. E. J., Saunders, R., O'Driscoll, C., Cohen, Z. D., Stott, J., Ambler, G., … Pilling, S. (2021c). Is social support pre-treatment associated with prognosis for adults with depression in primary care? Acta Psychiatrica Scandinavica, 143(5), 392405. doi: 10.1111/acps.13285CrossRefGoogle ScholarPubMed
Chekroud, A. M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., … Choi, K. (2021). The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry, 20(2), 154170. doi: 10.1002/wps.20882CrossRefGoogle ScholarPubMed
Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. The Annals of Applied Statistics, 4(1), 266298. doi: 10.1214/09-AOAS285CrossRefGoogle Scholar
Choi, W., Kim, J. W., Kang, H. J., Kim, H. K., Kang, H. C., Lee, J. Y., … Kim, J. M. (2021). Synergistic effects of resilience and serum ghrelin levels on the 12-week pharmacotherapeutic response in patients with depressive disorders. Journal of Affective Disorders, 295, 14891493. doi: 10.1016/j.jad.2021.09.039CrossRefGoogle ScholarPubMed
Chromik, M. (2021). Making SHAP Rap: Bridging local and global insights through interaction and narratives. In Ardito, C., Lanzilotti, R., Malizia, A., Petrie, H., Piccinno, A., Desolda, G. & Inkpen, K. (Eds.), Human-computer interaction – INTERACT 2021 (pp. 641651). Cham: Springer.CrossRefGoogle Scholar
Cipriani, A., Furukawa, T. A., Salanti, G., Chaimani, A., Atkinson, L. Z., Ogawa, Y., … Geddes, J. R. (2018). Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet, 391(10128), 13571366. doi: 10.1016/s0140-6736(17)32802-7CrossRefGoogle ScholarPubMed
Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. (2015). Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD statement. The British Journal of Surgery, 102(3), 148158. doi: 10.1002/bjs.9736CrossRefGoogle ScholarPubMed
Constantino, M. J., Vîslă, A., Coyne, A. E., & Boswell, J. F. (2018). A meta-analysis of the association between patients’ early treatment outcome expectation and their posttreatment outcomes. Psychotherapy, 55(4), 473485. doi: 10.1037/pst0000169CrossRefGoogle ScholarPubMed
Cuijpers, P., Noma, H., Karyotaki, E., Vinkers, C. H., Cipriani, A., & Furukawa, T. A. (2020). A network meta-analysis of the effects of psychotherapies, pharmacotherapies and their combination in the treatment of adult depression. World Psychiatry, 19(1), 92107. doi: 10.1002/wps.20701CrossRefGoogle ScholarPubMed
Day, E., Shah, R., Taylor, R. W., Marwood, L., Nortey, K., Harvey, J., … Strawbridge, R. (2021). A retrospective examination of care pathways in individuals with treatment-resistant depression. British Journal of Psychiatry Open, 7(3), e101e101. doi: 10.1192/bjo.2021.59CrossRefGoogle ScholarPubMed
Ermers, N. J., Hagoort, K., & Scheepers, F. E. (2020). The predictive validity of machine learning models in the classification and treatment of major depressive disorder: State of the art and future directions. Frontiers in Psychiatry, 11, 472. doi: 10.3389/fpsyt.2020.00472CrossRefGoogle ScholarPubMed
Furukawa, T. A., Suganuma, A., Ostinelli, E. G., Andersson, G., Beevers, C. G., Shumake, J., … Cuijpers, P. (2021). Dismantling, optimising, and personalising internet cognitive behavioural therapy for depression: A systematic review and component network meta-analysis using individual participant data. The Lancet Psychiatry, 8(6), 500511. doi: 10.1016/s2215-0366(21)00077-8CrossRefGoogle ScholarPubMed
GBD 2019 Diseases and Injuries Collaborators. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 12041222. doi: 10.1016/s0140-6736(20)30925-9CrossRefGoogle Scholar
Greden, J. F., Parikh, S. V., Rothschild, A. J., Thase, M. E., Dunlop, B. W., DeBattista, C., … Dechairo, B. (2019). Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: A large, patient- and rater-blinded, randomized, controlled study. Journal of Psychiatric Research, 111, 5967. doi: 10.1016/j.jpsychires.2019.01.003CrossRefGoogle Scholar
Gruszka, P., Burger, C., & Jensen, M. P. (2019). Optimizing expectations via mobile apps: A new approach for examining and enhancing placebo effects. Frontiers in Psychiatry, 10, 365. doi: 10.3389/fpsyt.2019.00365CrossRefGoogle ScholarPubMed
Hockenberry, J. M., Joski, P., Yarbrough, C., & Druss, B. G. (2019). Trends in treatment and spending for patients receiving outpatient treatment of depression in the United States, 1998–2015. JAMA Psychiatry, 76(8), 810817. doi: 10.1001/jamapsychiatry.2019.0633CrossRefGoogle ScholarPubMed
Huang, J., Wang, Y., Chen, J., Zhang, Y., Yuan, Z., Yue, L., … Fang, Y. (2018). Clinical outcomes of patients with major depressive disorder treated with either duloxetine, escitalopram, fluoxetine, paroxetine, or sertraline. Neuropsychiatric Disease and Treatment, 14, 24732484. doi: 10.2147/ndt.s159800CrossRefGoogle ScholarPubMed
Karrer, T. M., Bassett, D. S., Derntl, B., Gruber, O., Aleman, A., Jardri, R., … Bzdok, D. (2019). Brain-based ranking of cognitive domains to predict schizophrenia. Human Brain Mapping, 40(15), 44874507. doi: 10.1002/hbm.24716CrossRefGoogle ScholarPubMed
Katz, I. R., Liebmann, E. P., Resnick, S. G., & Hoff, R. A. (2021). Performance of the PHQ-9 across conditions and comorbidities: Findings from the Veterans Outcome Assessment survey. Journal of Affective Disorders, 294, 864867. doi: 10.1016/j.jad.2021.07.108CrossRefGoogle ScholarPubMed
Kazdin, A. E., Wu, C.-S., Hwang, I., Puac-Polanco, V., Sampson, N. A., Al-Hamzawi, A., … Kessler, R. C. (2021). Antidepressant use in low- middle- and high-income countries: A World Mental Health Surveys report. Psychological Medicine, Advance online publication. doi: 10.1017/S0033291721003160Google ScholarPubMed
Kessler, R. C., & Luedtke, A. (2021). Pragmatic precision psychiatry – A new direction for optimizing treatment selection. JAMA Psychiatry, 78(12), 13841390. doi: 10.1001/jamapsychiatry.2021.2500CrossRefGoogle ScholarPubMed
King, P. R., Beehler, G. P., Buchholz, L. J., Johnson, E. M., & Wray, L. O. (2019). Functional concerns and treatment priorities among veterans receiving VHA Primary Care Behavioral Health services. Families, Systems & Health, 37(1), 6873. doi: 10.1037/fsh0000393CrossRefGoogle ScholarPubMed
Kraus, C., Kadriu, B., Lanzenberger, R., Zarate, C. A. Jr, & Kasper, S. (2019) Prognosis and improved outcomes in major depression: A review. Translational Psychiatry, 9(1), 127. doi: 10.1038/s41398-019-0460-3CrossRefGoogle ScholarPubMed
Laferton, J. A. C., Kube, T., Salzmann, S., Auer, C. J., & Shedden-Mora, M. C. (2017). Patients’ expectations regarding medical treatment: A critical review of concepts and their assessment. Frontiers in Psychology, 8, 233233. doi: 10.3389/fpsyg.2017.00233CrossRefGoogle ScholarPubMed
Laird, K. T., Lavretsky, H., St Cyr, N., & Siddarth, P. (2018). Resilience predicts remission in antidepressant treatment of geriatric depression. International Journal of Geriatric Psychiatry, 33(12), 15961603. doi: 10.1002/gps.4953CrossRefGoogle ScholarPubMed
Larson, S., Nemoianu, A., Lawrence, D. F., Troup, M. A., Gionfriddo, M. R., Pousti, B., … Touya, M. (2021). Characterizing primary care for patients with major depressive disorder using electronic health records of a US-based healthcare provider. Journal of Affective Disorders, 300, 377384. doi: 10.1016/j.jad.2021.12.096CrossRefGoogle ScholarPubMed
LeDell, E., van der Laan, M. J., & Petersen, M. (2016). AUC-maximizing ensembles through Metalearning. The International Journal of Biostatistics, 12(1), 203218. doi: 10.1515/ijb-2015-0035CrossRefGoogle ScholarPubMed
Lee, Y., Ragguett, R. M., Mansur, R. B., Boutilier, J. J., Rosenblat, J. D., Trevizol, A., … McIntyre, R. S. (2018). Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. Journal of Affective Disorders, 241, 519532. doi: 10.1016/j.jad.2018.08.073CrossRefGoogle ScholarPubMed
Leeuwenberg, A. M., van Smeden, M., Langendijk, J. A., van der Schaaf, A., Mauer, M. E., Moons, K. G. M., … Schuit, E. (2022). Performance of binary prediction models in high-correlation low-dimensional settings: A comparison of methods. Diagnostic and Prognostic Research, 6(1), 1. doi: 10.1186/s41512-021-00115-5CrossRefGoogle ScholarPubMed
Leon, A. C., Olfson, M., Portera, L., Farber, L., & Sheehan, D. V. (1997). Assessing psychiatric impairment in primary care with the Sheehan Disability Scale. International Journal of Psychiatry in Medicine, 27(2), 93105. doi: 10.2190/t8em-c8yh-373n-1uwdCrossRefGoogle ScholarPubMed
Lindhiem, O., Petersen, I. T., Mentch, L. K., & Youngstrom, E. A. (2020). The importance of calibration in clinical psychology. Assessment, 27(4), 840854. doi: 10.1177/1073191117752055CrossRefGoogle ScholarPubMed
Little, A. (2009). Treatment-resistant depression. American Family Physician, 80(2), 167172.Google ScholarPubMed
Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Retrieved from https://proceedings.neurips.cc//paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.Google Scholar
Maj, M., Stein, D. J., Parker, G., Zimmerman, M., Fava, G. A., De Hert, M., … Wittchen, H. U. (2020). The clinical characterization of the adult patient with depression aimed at personalization of management. World Psychiatry, 19(3), 269293. doi: 10.1002/wps.20771CrossRefGoogle ScholarPubMed
McHugh, R. K., Whitton, S. W., Peckham, A. D., Welge, J. A., & Otto, M. W. (2013). Patient preference for psychological vs pharmacologic treatment of psychiatric disorders: A meta-analytic review. The Journal of Clinical Psychiatry, 74(6), 595602. doi: 10.4088/JCP.12r07757CrossRefGoogle ScholarPubMed
Min, J. A., Lee, N. B., Lee, C. U., Lee, C., & Chae, J. H. (2012). Low trait anxiety, high resilience, and their interaction as possible predictors for treatment response in patients with depression. Journal of Affective Disorders, 137(1–3), 6169. doi: 10.1016/j.jad.2011.12.026CrossRefGoogle ScholarPubMed
Noma, H., Furukawa, T. A., Maruo, K., Imai, H., Shinohara, K., Tanaka, S., … Cipriani, A. (2019). Exploratory analyses of effect modifiers in the antidepressant treatment of major depression: Individual-participant data meta-analysis of 2803 participants in seven placebo-controlled randomized trials. Journal of Affective Disorders, 250, 419424. doi: 10.1016/j.jad.2019.03.031CrossRefGoogle ScholarPubMed
Park, T., & Casella, G. (2008). The Bayesian lasso. Journal of the American Statistical Association, 103(482), 681686. doi: 10.1198/016214508000000337CrossRefGoogle Scholar
Perlman, K., Benrimoh, D., Israel, S., Rollins, C., Brown, E., Tunteng, J. F., … Berlim, M. T. (2019). A systematic meta-review of predictors of antidepressant treatment outcome in major depressive disorder. Journal of Affective Disorders, 243, 503515. doi: 10.1016/j.jad.2018.09.067CrossRefGoogle ScholarPubMed
Perna, G., Alciati, A., Daccò, S., Grassi, M., & Caldirola, D. (2020). Personalized psychiatry and depression: The role of sociodemographic and clinical variables. Psychiatry Investigation, 17(3), 193206. doi: 10.30773/pi.2019.0289CrossRefGoogle ScholarPubMed
Polley, E. C., Rose, S., & van der Laan, M. J. (2011). Super learning. In van der Laan, M. J. & Rose, S. (Eds.), Targeted learning: Casual inference for observational and experimental data (pp. 4366). New York: Springer.CrossRefGoogle Scholar
Polley, E., LeDell, E., Kennedy, C., Lendle, S., & van der Laan, M. J. (2021). Superlearner: Super learner prediction, version 2.0-28. Retrieved from https://CRAN.R-project.org/package=SuperLearner.Google Scholar
Puac-Polanco, V., Leung, L. B., Bossarte, R. M., Bryant, C., Keusch, J. N., Liu, H., … Kessler, R. C. (2021). Treatment differences in primary and specialty settings in veterans with major depression. Journal of the American Board of Family Medicine, 34(2), 268290. doi: 10.3122/jabfm.2021.02.200475CrossRefGoogle ScholarPubMed
Qaseem, A., Barry, M. J., & Kansagara, D. (2016). Nonpharmacologic versus pharmacologic treatment of adult patients with major depressive disorder: A clinical practice guideline from the American College of Physicians. Annals of Internal Medicine, 164(5), 350359. doi: 10.7326/m15-2570CrossRefGoogle ScholarPubMed
R Core Team. (2021). R: A language and environment for statistical computing. Retrieved from https://www.R-project.org/.Google Scholar
Rush, A. J., & Thase, M. E. (2018). Improving depression outcome by patient-centered medical management. American Journal of Psychiatry, 175(12), 11871198. doi: 10.1176/appi.ajp.2018.18040398CrossRefGoogle ScholarPubMed
Rush, A. J., Trivedi, M. H., Ibrahim, H. M., Carmody, T. J., Arnow, B., Klein, D. N., … Keller, M. B. (2003). The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression. Biological Psychiatry, 54(5), 573583. doi: 10.1016/s0006-3223(02)01866-8CrossRefGoogle ScholarPubMed
Santee, A. C., & Starr, L. R. (2021). Examining linear and nonlinear associations between negative emotional reactivity to daily events and depression among adolescents. Clinical Psychological Science, Advance online publication. doi: 10.1177/21677026211045684Google Scholar
SAS Institute Inc. (2013). SAS ®software (9.4 ed.). Cary, NC: SAS Institute Inc.Google Scholar
Stolzmann, K., Meterko, M., Miller, C. J., Belanger, L., Seibert, M. N., & Bauer, M. S. (2019). Survey response rate and quality in a mental health clinic population: Results from a randomized survey comparison. The Journal of Behavioral Health Services & Research, 46(3), 521532. doi: 10.1007/s11414-018-9617-8CrossRefGoogle Scholar
Wang, G., You, X., Wang, X., Xu, X., Bai, L., Xie, J., … Hu, C. (2018). Safety and effectiveness of escitalopram in an 8-week open study in Chinese patients with depression and anxiety. Neuropsychiatric Disease and Treatment, 14, 20872097. doi: 10.2147/ndt.s164673CrossRefGoogle Scholar
Yuan, M., Kumar, V., Ahmad, M. A., & Teredesai, A. (2021). Assessing fairness in classification parity of machine learning models in healthcare. Retrieved from https://arxiv.org/abs/2102.03717.Google Scholar
Zilcha-Mano, S., Wang, X., Wajsbrot, D. B., Boucher, M., Fine, S. A., & Rutherford, B. R. (2021). Trajectories of function and symptom change in Desvenlafaxine clinical trials: Toward personalized treatment for depression. Journal of Clinical Psychopharmacology, 41(5), 579584. doi: 10.1097/jcp.0000000000001435CrossRefGoogle ScholarPubMed
Ziobrowski, H. N., Kennedy, C. J., Ustun, B., House, S. L., Beaudoin, F. L., An, X., … van Rooij, S. J. H. (2021a). Development and validation of a model to predict posttraumatic stress disorder and major depression after a motor vehicle collision. JAMA Psychiatry, 78(11), 12281237. doi: 10.1001/jamapsychiatry.2021.2427CrossRefGoogle Scholar
Ziobrowski, H. N., Leung, L. B., Bossarte, R. M., Bryant, C., Keusch, J. N., Liu, H., … Kessler, R. C. (2021b). Comorbid mental disorders, depression symptom severity, and role impairment among Veterans initiating depression treatment through the Veterans Health Administration. Journal of Affective Disorders, 290, 227236. doi: 10.1016/j.jad.2021.04.033CrossRefGoogle ScholarPubMed
Zou, G. (2004). A modified Poisson regression approach to prospective studies with binary data. American Journal of Epidemiology, 159(7), 702706. doi: 10.1093/aje/kwh090CrossRefGoogle ScholarPubMed
Zubizarreta, J. R. (2015). Stable weights that balance covariates for estimation with incomplete outcome data. Journal of the American Statistical Association, 110(511), 910922. doi: 10.1080/01621459.2015.1023805CrossRefGoogle Scholar
Zubizarreta, J. R., Li, Y., Allouah, A., & Greifer, N. (2021). sbw: Stable balancing weights for causal inference and estimation with incomplete outcome data (Version 1.1.1). Retrieved from https://cran.rstudio.com/web/packages/sbw/.Google Scholar
Supplementary material: File

Puac-Polanco et al. supplementary material

Puac-Polanco et al. supplementary material

Download Puac-Polanco et al. supplementary material(File)
File 114.4 KB